
MECHANICAL
ENGINEERING DEPARTMENT

DJM20032

NORMAWAR BINTI ALI

VERSION 1.0

NORMAWAR BINTI ALI

Lecturer

Mechanical Engineering Department

Politeknik Tuanku Sultanah Bahiyah

AUTHOR:

Al l right reserve. No parts of this publ ication may be reproduce or transmitted in

any forms or any means, electronic or mechanical including photocopy, recording or

any information storage and retrieval system, without permission in writing from

Library of Pol iteknik Tuanku Sultanah Bahiyah, Kul im Hi-Tech Park, 09090 Kulim,

Kedah.

Mechanical Engineering Department

Politeknik Tuanku Sultanah Bahiyah

Kulim Hi-Tech Park,

09090 Kulim,

Kedah

normawar@ptsb.edu.my

Copyright © 2021

e ISBN 978-967-0855-94-3

PREFACE

Alhamdulillah to Allah SWT With His grace and mercy, the first e-book module of

DJM20032 C PROGRAMMING has finally completed. Thank you to my family and

friends especially PTSB e-book team for being support me to complete this e-

book. I also would like to thank you to my Head of Mechanical Engineering

Department, En. Azhar Bin Fikri for giving this opportunity. As educator, I feel

the need to prepare a e-book module that consist of notes ,step by step

practical works and some exercises that can assist the student in the learning

process.

 The content of this e-book has been constructed to meet the

polytechnic's syllabus requirement. Some chapter contains illustrative

screenshots to match the main practical work, enhancing student

comprehending ability. This e-book contains 5 chapter such as Introduction to

Programming Concepts, Structure of C Programmes, Data Input Ouput,

COntrol System, Function and also variety of exercises and examples

 Any positive feedback from lecturer and student are mostly welcome

and appreciated. Hopefully this e-book module is one of the step that start the

long journey of road to excellent.

SYNOPSIS

 Explain knowledge of basic concepts of C Programming to solve

given problem using an appropriate data type. (C2, PLO1)

 Constructs a high level programming language in solving variety

engineering and scientific problems. (P3, PLO3)

Present a solution for assigned project based on programming

which relates to current or upcoming technologies and

peripherals. (A2, plo12)

C PROGRAMMING course provides an instruction to program design

and development. Student will learn to design, code, debug, test and

document well structured programs based on technical and

engineering problem. Topic covered ; software development principle,

programming language basic, data types, input and output operation,

the use of selection, loops, arrays and function structure.

Upon completion of this course, student should be able to:

1.

2.

3.

TOPICS PAGES

Introduction to
Programming Concepts 1 - 27

Structure of
C Programmes 28 - 42

Data Input
Output 43 - 58

Control
Statement 59 - 89

Function 90- 107

Question and Exercise 108 - 140

TABLE OF CONTENTS

INTRODUCTION

TO

PROGRAMMING CONCEPTS

Types of Programming

Problem Solving

Constants & Variables

Data Types

Operators & Expressions

CHAPTER 1

INTRODUCTION TO

COMPUTERS
In a layman language, a computer is a fast calculating

device which can perform arithmetic operatios.

Although the computer was originally invented mainly for

performing high speed and accurate calculations, it is no

just a calculating device.

Important terms used:

Data - A set of basic fatcs and entities that itself has no

meaning.

Information - Data which has some meaning or value for the

user.

Instruction- Data which has some meaning or value for the user.

Input - Data and instructions given to computer.

Process - Manipulation obtained after processing of data.

Output- Information obtained after processing of data.

WHO IS A PROGRAMMER?

A computer programmer writes, tests,

and maintains software and programs

that instruct the computer as to what it

should do.

Computer programmers convert what

needs to happen into computer language,

so that the computer can “understand” it.

A computer programmer writes and

develops computer programs to

accomplish certain tasks, to store data or

documents, and locate and retrieve that

data or those documents.

Computer programmers code instructions for

the computer into one of the many computer

languages in existence.

BASICS OF COMPUTER AND

ITS OPERATIONS

Central

Processing

Unit

Memory

System

(RAM)

Memory

System

(ROM)

Peripheral

Interfaces

Screen

Keyboard

Disk

Drives

Tape

Drives
Printer

BASICS OF COMPUTER AND

ITS OPERATIONS

The different parts are linked together in some way by the

bus, so that information can pass between them.

To be able to write programs, we need a "model: of the

computer system.

Central

Processing

Unit

It contains the hardware resources required to

execute instructions.

Memory

System

(RAM)

Simply a mechanism in which information can be

stored. The only operations that can be performed

on memory are reading information from it or writing

information to it.

Peripheral

Interfaces

Devices external to the computer system. They are

connected to the system through gateways called

interfaces.

Microprocessor

Single Cip

Microcomputer

Simply a CPU on a small number of integrated

circuit package.

Complete computer system on one

integrated circuit package.

BASICS OF COMPUTER AND

ITS OPERATIONS

Storage Operation

Regardless of type and size, all computer follow same four

main operations.

Input Operation

Processing Operation

Output Operation

BASICS OF COMPUTER AND

ITS OPERATIONS

Input is whatever is put in (input) to a computer system. Input

can be nearly any kind of data,. Which is letters, numbers,

symbols, shapes, colours, sound or whatever raw material

needs processing. When user types some words or numbers

on a keyboard, these words are considered input data.

Input Operation

Processing Operation

Processing is the manipulation, a computer does to transform

data into information. The processing is done by the Central

Processing Unit(CPU).

BASICS OF COMPUTER AND

ITS OPERATIONS

Secondary storage is the area in the computer where data

or information is held permanently. A hard disk is an example

of this kind storage.

Output Operation

Output is whatever is output from the computer system, the

result of processing usually information. For example,

numbers or pictures displayed on the monitor, words printed

out on paper using a printer.

Storage is of two types which primary storage and

permanent storage. Primary storage or memory is the

computer circuitry that temporarily hold data waiting to be

processed.

Storage Operation

LIST THE VARIOUS TYPES OF

PROGRAMMING LANGUAGE

High-level languages

Similar to everyday English and use mathematical notations

(processed bycompilers or interpreters)

Example of a C statement:

a = a + 8;

Assembly language

Using meaningful symbols to represent machine code.

Example: addhl, de

Assembler : Assembly code à machine code

Dissembler : machine code à assembly code

Machine code or machine languages

A sequence of 0’s and 1’s giving machine specific instructions

Example: 00011001

List of Programming Language

++
OMIT

obolScript

ombined Programming Language

ADVANTAGES & DISADVANTAGE

OF C PROGRAMMING

"C" is the language's entire name and it does not stand for

anything. Developed at Bell Laboratories in the early 1970's by

Dennis Ritchie, C is a general purpose, compiled language that

works well for microcomputers and is portable among many

computers.

C is flexible, high level, structured programming language.

C includes many low level features that are normally available

only in assembly or machine language.

C programs are very concise, due to the large number of

operators within the language.

C is weakly typed language and the programs written in it

compile into small object programs that run or execute

efficiently.

Advantages

C is considered difficult to learn.

Because of its conciseness, the code can be difficult to follow.

It is not suited to application that require a lot of report

formatting and data file manipulation.

Disadvantages

LEVELS OF PROGRAMMING

LANGUAGES

CMatlab

Fortran

Java

C shell

Ch
C++

LEVELS OF PROGRAMMING

LANGUAGES

Machine Language
written in etiher

binary numbers

(0 and 1)

or hexadecimal (0 to F)

Assembly

Language

Symbolic langauge

that uses symbols to

represent computer

instructins.

High Level

Language

Written in English & easy

to understand

Assembler

A software package used to convert assembly

language into machine language.

Translation of highlevel language into machine

instruction done by special computer program

which compilers or interpreters.

COMPILER AND INTERPRETER

Source

Code
Machine

Code
COMPILER

Input

Data
Output

Data
EXECUTABLE

PROGRAM

COMPILER
Analyzes program and translates it into

machine language.

EXECUTABLE PROGRAM
Can be run independently from compiler as

many times => fast execution.

COMPILER AND INTERPRETER

Source

Code

Output

DataINTERPRETER

Input

Data

INTERPRETER
Analyzes and executes program

statements at the same time.

EXECUTABLE PROGRAM
Execution is slower and easier to debug

program.

TYPES OF PROGRAMMING

Structured Programming

U s e c o n t r o l s t r u c t u r e s w i t h o n l y o n e

 e n t r y po i n t a n d o n e e x i t p o i n t

T h e m o s t i m p o r t a n t o f t h e s e s t r u c t u r e s a r e

 s e q u e n c e , s e l e c t i o n (i f a n d i f . . e l s e) a n d r e p e t i t i o n

(w h i l e) .

E x a m p l e :

i n c l u d e < s t d i o . h >

i n t m a i n ()

{

p r i n t f (" H e l l o , w o r l d \ n ") ;

r e t u r n 0 ;

}

M o d u l a r p r o g r a m m i n g i s s u b d i v i d i n g y o u r

p r o g r a m i n t o s e p a r a t e s u b p r o g r a m s s u c h

a s f u n c t i o n s a n d s u b r o u t i n e s .

T h e n i f s o m e o n e e l s e w a n t s t o c o m p u t e a

d i f f e r e n t s o l u t i o n u s i n g y o u r p r o g r a m ,

O n l y t h e s e s u b r o u t i n e s n e e d t o b e c h a n g e d .

T h i s i s a l o t e a s i e r t h a n h a v i n g t o r e a d t h r o u g h

a p r o g r a m l i n e b y l i n e , t r y i n g t o f i g u r e o u t w h a

t e a c h l i n e i s s u p p o s e d t o d o a n d w h e t h e r i t

n e e d s t o b e c h a n g e d .

TYPES OF PROGRAMMING

Modular Programming

Module

Module Module Module

Control Module

SubModule Library Module

Object Orientation is a set of tools and methods that enable

software engineers to build reliable, user friendly,

maintainable, well documented, reusable software systems

that fulfills the requirements of its users.

In the older styles of programming, a programmer who is

faced with some problem must identify a computing task

that needs too be performed in order to solve the problem.

TYPES OF PROGRAMMING

Object Oriented Programming

Function1 ()
Function2 ()

Data 1

Data 2

Data 1

Data 2

Data 1

Data 2

Object 1

Object 2

Object 3

Structured Programming is easier than

unstructured program to understand, test, debug

and modify programs.

Rules developed by programming community

Only single entry/single exit control structures are used

Rules:
 Begin with the simplest flowchart

 Any rectangle (action) can be replaced by two

rectangles (actions) in sequence.

 Any rectangle (action) can be replaced by any control

structure (sequence, if, if/else, switch, while, do/while or

for)

Rules 2 and 3 can be applied in any order and multiple

times.

1.

2.

3.

4.

STRUCTURED PROGRAMMING

Rules for Structured Programming

Solving problems is the core of computer science.

Programmers must first understand how a human solves

a problem, then understand how to translate this

"algorithm" into something a computer can do and finally

how to "write" the specific syntax to get job done.

 Analysis & Specification

Define problem & what solution

General Solution (Algorithm)

Develop logical sequence of step to

solve problem

Verify

1.

a.

2.

a.

3.

 Specific Solution (Program)

Translate algorithm to code

Test - Check result manually

1.

a.

2.

 Use the program

Maintain

Modify to meet changed

requirement or to correct errors.

1.

2.

a.

Problem Solving Phase

PROBLEM SOLVING

Problem Solving Phase

Maintenance Phase

Analyzing the problem - Problem Analysis Chart

(PAC)

Creating general solutions

Developing the Hierarchy Input Process Output

(HIPO) chart or Interactivity Chart (IC)

Developing the Input Process Output (IPO) Chart

Drawing the Program Flowcharts

Writing the Algorithms

Verify that you solution really solves the problem

1.

2.

a.

b.

c.

d.

3.

YES

PROBLEM SOLVING STAGES
Developing a program involves steps similar to any

problem solving task. This phase requires 3 stages:

Identify

the problem

Develop

alternatives

Select the

best

alternative
Implement

Did the

solution

work?

NO

DONE

Understand and analyze the problem to determine

whether it can be solved by a computer.

Analyze the requirement of the problem.

Identify the following:

Data requirement

Processing requirement or procedures that will

be needed to solve the problem.

The output.

All these requirement can be presented in:

Problem Analysis Chart

Data Processing Output

Given in the

problem or

provided by the

user

List of processing

required or

procedures.

Output

requirement.

Problem Analysis Chart

Hierarchy Chart

Hierarchy Output Process

Output (HIPO) / Interactivity

Chart (IC)
The problem is normally big and complex and requires big

program.

The processing can be divided into subtasks called modules.

Each module accomplishes one function.

These modules are connected to each other to show the

interaction of processing between the modules.

Main module controls the flow all other modules.

The (IC) is developed using top down method: top to down left

to right order.

Modules are numbers, marked for duplication, repetition or

decision.

Input Process Output (IPO)

Chart

Extends and organizes the information in the Problem Analysis

Chart.

It shows in more detail what data items are input, what are

the processing or modules on that data and what will be the

result or outpt.

It combines information from PAC and HIPO Chart.

Input Processing Module Output

All input

data from

PAC

All

processing

steps from

HIPO/IC

Module

reference

from the IC

All output

data from

PAC

IPO Chart

Flowchart is the graphic representations of the individual

steps or actions to implements a particular module.

Flowchart is independent of any programming language.

Flowchart is the logical design of a program.

Flowchart serves as documentation for computer program.

The flowchart must be drawn according to definite rules and

utilizes standard symbols adopted internationally.

Flow Charts & Pseudo Code

Drawing the Program Flowchart

Pseudo code means an imitation computer code.

It is used in place of symbols or a flowchart to describe the logic

of a program. Thus it is a set of instructions to describe the

logic of a program.

Pseudo code is close to the actual programming language.

Using the pseudo code, the programmer can start to write

the actual code.

Flow Charts & Pseudo Code
Writing the Algorithm (Pseudo Code)

Start

Read price, quantity

Sale = price x quantity

Print Sale

End

A violation of the C grammar rules, detected during

program transition.

Statement cannot be translated and program

cannot be executed

Various Types of ERROR

THREE (3) kinds of errors:

SYNTAX ERROR

An error caused by following an incorrect algorithm.

Very difficult to detect.

The only sign of logic error.

Can be detected by testing the program

An attempt to perform invalid operation, detected

during program execution.

Occurs when the program directs computer to

perform an illegal operation such as dividing a

number by zero.

The computer will stop executing the program and

displays a diagnostic message indicates the line

where the error was detected.

LOGIC ERROR / DESIGN ERROR

RUN TIME ERROR

CHAPTER 2

STRUCTURE OF

C PROGRAMMES

General Form of

C Programmes

Commands that gives instructions to

the C preprocessor

Preprocessor

Directives

C preprocessor modifies the text of C

program before it is compiled

Two most common ones are #include

and #define

Begins with #

Contains collections of useful functions

and symbols called the libraries

Preprocessor

Directives

This variant is used for system header files.

It searches for a file named file in a list of

directories specified by you, then in a

standard list of system directories

#define directive

A preprocessor define directive directs the

preprocessor to replace all subsequent

occurrences of a macro with specified

replacement tokens

#include <file>

Each library has a standard header file

whose name ends with .h

Preprocessor

Directives

#include gives a program access to a library

#include <stdio.h>

#define KMS_PER_MILE 1.609

Header Files

With a header file the related declarations

appear in only one place.

These files allow programmers to separate certain

elements of a program's source code into reusable

files.

If they need to be changed, they can be changed in one

place and programs that include the header file will

automatically use the new version when next recompiled.

All library functions in C (and its many derivatives) are declared

in header files.

stands for "standard input/output header", is the header in the

C standard library that contains macro definitions, constants,

and declarations of functions and types used for various

standard input and output operations.

stdio.h

Thus, programmers have to include the stdio.h header in the

source code in order to use the functions declared in it.

conio.h header contains functions for console input/output.

Functions of conio.h can be used to clear screen, change color

of text and background, move text, check if a key is pressed or

not and many more.

conio.h

Some of the most commonly used functions of conio.h are

clrscr, getch, getche, kbhit etc.

math.h
math.h contains functions to perform mathematical

operations often required in c programs such as

calculating absolute value of a number,

calculating logarithms and using trigonometric

functions to calculate sin, cos of a number.

Ctype.h
This header declares a set of functions to classify and

transform individual characters. There are two sets of

functions:

Set of classifying functions that check whether the

character passed as parameter belongs to a certain

category.

Two functions to convert between letter cases.

Text beginning with /* and */

Provides supplementary information about the program

Ignored by the preprocessor and compiler

Use comments to describe the purpose of the program

Part of the program documentation

Can appear in itself or at the end of a line

Each program should begin with a header section

string.h

Comments

Standard C library to manipulate C strings

Function main

of a program.

int main (void) marks the beginning

int main (void)

 {

 int a;

 int b;

 int c;

 a = 10;

 b = 20;

 c = a + b;

 printf(“%d\n”, c);

 return(0);

 }

Declarations:

tells what memories are required

Executable statements :

tells the computer what to do

{… } is the body of the program

A function (main) has two parts which is:

Example Program

Return

Statement

Transfers control from the program to the

operating system

return (0)

0 means program is executed without error

EVIEW UESTION

XERCISES

Give some advantages and disadvantages of C language,

What does the C character set consists of?

What are the identifiers in an y programming language?

How the identifiers can be formed in C?

Explain the structure of a C program.

What are various data types used in C language?

Name and describe any four basic data types in C.

Name and describe the four data type qualifiers. To which data

types can each qualifier be applied?

What the different types of integer constants?

What is variable?

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

DATA

INPUT OUTPUT

CHAPTER 3

Understand Selection Statement

Understand Function of Input Output

Statement

Input Output Operation

Introduction

 C Environment

Keyboard

Standard Input

Device (stdin)
Standard Output

Device (stdout)

VDU

Standard error device (stdeerr)

The C environment consists of the standard input device (keyboard),

the standard output device (VDU) and the standard error device and

they linked together.

C language provides the functions

getc() , getchar (), getche ()

putch (), putchar (),

scanf(), printf ()

for character input output and

gets () , puts ()

scanf (), printf () for string based input output

The stdin, stdout and the stderr are used as references for

accessing the devices by the C enviroments for the standard input

output operations.

The standard input output function may be considered as character

based input output functions and string based input output

functions.

The statement #include <stdio.h> includes the contents of standard

input output file. stdio.h at compile time which contains definitions of

stdin, stdout and stderr.

The input output operations are not part of C language as such

rather they exist as functions as part of the language.

Character

Input/Output
In C, we have functions for performing input/output of single

character at a time known as character I/O functions.

The getchar (), getche () and getch () are used for character input

and putchar () is used for character output.

getchar () Function

It return a character just entered from the standard input unit

that is keyboard.

The enter character ca n be either assigned to a character variable

or to the computer screen

The function getchar () has the following form:

var_name = getchar () ;

getche () Function

It return a character just entered from the standard input unit. The

entered character is displayed to the computer screen.

It read a single character the moment it is typed without waiting for

the ENTER key to be hit.

The function getche () has the following form:

var_name = getche () ;

It return a character just entered from the standard input unit. The

entered is not displayed on the screen,

It read a single character the moment it is typed without waiting for

the Enter Key to be hit.

The function getch () has the following form:

getche () ;

It prints the character constant or the character variable to the

standard output device.

The function putchar () has the following form:

putchar (var_name) ;

getch () Function

putchar () Function

Formatted

Input / Output
The scanf () Function for Input Operation

It is used for formatted input from standard input device that is

keyboard.

The format specification string along the data to be input are the

parameters to the scanf () function.

The syntax of the function scanf () ;

scanf (" format specification string", list address of variable) ;

Example:

char ch;

int x;

float y;

scanf ("%c % d % f", &ch, &x, &y);

Format specification

string
List of addresses of

variable

Formatted

Input / Output

The scanf () function reads and converts characters from the

standard input according to the specified format string and stores

the input in the memory locations represented by the list of the

variables.

The conversion characters along with their meanings are:

d the variable accepted as an integer

c the variable accepted as a character

f the variable accepted as a float

s the variable accepted as a string and a space is considered as

string terminator.

The data items entered from the keyboard must correspond to the

arguments in the scanf () function in number, in type and in order.

NOTED THAT, the list of variables is listed as &ch, &x and &y . This is the

way of specifying list of adresses of variables in a scanf () function.

Conversion Specification having % an optional number for width

specification and a conversion character.

Input of Integer Values
The following specification is provided for integer input:

% wd

Here % used for conversion specification

w denotes the field width

d used for integer data type

For example:

scanf ("% 3d %4d", &val 1,, & val2);

Input of Real Values Float and Double Type

In C, the scanf () function accepts real values in both forms

fractional form and exponential form.

The specifications for float and double are % f and % lf.

For example:

scanf (" %5f %8 lf", &x, &y) ;

Input / Output of Character Type Data

A single character can be read from the keyboard by using the

scanf () function with % c format specification.

For example:

char ch;

..

scanf ("%c, &ch) ;

Input / Output of String Type Data

A string is an array of characters terminated by a '\0'

character.

The maximum number of characters that can be stored in an

array of characters is 1 less than its size as the last characters is

always a NULL character (\0).

For example:

char string [21];

it will store at maximum 20 characters

The two types of console Input/Output functions for string type

data are:

Unformatted functions

Formatted functions

Unformatted Functions

For input the function is gets() and for output puts ()

The gets () function overcomes the drawback of the scanf ()

function for receiving a multiword string.

The scanf () function which is a formatted function for receiving a

string cannot recieve multiword string.

The gets () recieves a string from the keyboard when ENTER KEY

is hit after typing the string.

The puts () function displays only one string at a time on the

screen.

Formatted Functions

For input the function is scanf () and for output printf ()

The syntax for scanf () :

scanf ("%s" , string_variable) ;

But scanf () cannot receive a multiword string. The array name

do not begin with ampersand in scanf () function.

The syntax for printf() :

printf ("%s" , string_variable) ;

INPUT OF MIXED

DATA TYPES

But one must be careful in such case as the order and type of data

entered must match with that specified in the format specification

string.

Example:

#include<stdio.h>

main ()

{

char ch ;

int x ;

float y ;

clrscr () ;

printf ("Enter the value of char int and float types \n") ;

scanf("%c%d%f", &ch, &x, &y) ;

printf ("\nThe entered values are\n") ;

printf("\n%c %d %f \n", ch, x, y) ;

Output:

Enter the value of char int and float types

A 3313 336.5

The entered values are

A 3313 336.500000

C allows input of mixed data type using one scanf () statement.

OUTPUT OF INTEGER

VALUES

In C, the format specification for printing integer value is given as:

 %wd

Here, w is minimum field width. It is optional. In case the width of the

number to be printed is greater than the specified width, it will be

printed correctly, over riding the width specified by the user.

d is used for integer specification. Using the above format the

number is right justified and blanks will appears on the lft side of it.

Example, if we want to print 3313 on the monitor using printf (), the

it can be achieved in any one of the following ways.

Specified Format

3printf ("%8d", 3313);

Output Produced

3 1 3

printf ("%d", 3313); 3 3 1 3

printf ("%-8d", 3313); 3 3 1 3

printf ("%-08d, 3313); 3 3 1 30 0 0 0

printf ("%2d", 3313); 3 3 1 3

note: We use % ld for outputting long integers values.

OUTPUT OF REAL VALUES
A real number can be displayed in any one of following forms:

Fractional form Exponent form

% w.pf % w.pe

w denotes the minimum

width including the decimal

point.

p denotes the number of

digits after decimal point. f

is used for float

specifications.

w denotes the field width .

p the number of digits after

decimal point.

The output will be right

justified.

The value is rounded off

and printed right justified

in the specified width of w

coloumn.

OUTPUT OF SINGLE

CHARACTER
In C, the format specification for printing a single character

value is given as %wc

w specifies the filed width and the output will be right justified.

EVIEW UESTION

XERCISE

 What is the purpose of scanf () and printf () functions?

Describe formatted Input/Output functions in C language.

What is meant by a control string used in I/O statement?

Discuss it.

Explain getchar (), putchar (), gets () and puts ()

When printing a float or double with %f, how many digits

after decimal does printf () output?

What is the purpose of the following in printf ():

% lf

%6.2f

\a

\t

Using one printf () statement only, print following message:

Remainder can be found using /

and "%" isn't a special symbol.

1.

2.

3.

4.

5.

6.

a.

b.

c.

d.

7.

EVIEW UESTION

XERCISE

 Find syntax error in following program and write

equivalent corrected code:

}

1.

#include<stdio.h>

main

{

int a ; b =20;

10 =a;

int c;

c = a+b

printf ('the sum='c);

 2. What will be the output of the following program?

#include<stdio.h>

main ()

{

char a,b;

a = 'b'

b=a;

printf("b=%c\n",b);

}

CHAPTER 4
Control

Statement

Understand Selection Statements
Understand Looping Statement

Understand Array Data Structure

Understand Multi-Dimensional Array

The normal flow of execution of statements in a high level

language program is also in the sequential order. Each statement

is executed in its order of occurrence in the program.

INTRODUCTION

For example the c program statements will

be executed in the sequential order

..........

..........

a = 50;

b = 10;

q = a/b;

..........

..........

First, a = 50 will be executed followed

by the statement

b = 10 and the statement q =a/b

strictly in the sequential

order.

Some problems oftenly require that the normal flow of control be

altered depending on the requirement.

It means that we may wish selective and/or repetitive execution

of any portion of the program

C supports a number of control structures to perform

the processing.

Sequence control structure

Selection control structure (branching)

Looping control structure (repetition or iteration)

Control Structure
A function is a set of statements to perform a specific task.

For solving specific task, we may have many algorithms,

some simple and other complex.

The program should be written in a user friendly way so

that it may be modified later on by anyone who wishes to

change it.

Debugging and maintenance would be easy if the program

is coded with a proper format.

For attaining the objective of a good program, we use one or

any combanation of the following three control structures:

The sequence control structure may consist of a single

statement or a sequence of statement with a single entry

and single exit.

The Sequence Control Structure

Statement 1

Statement 2

Statement 3

Exit

Entry

Example statement or function call.

Case is an important

version of selection (more

than a single yes or no

decision. The figure beside

illustrates variation on

selection for the case

control structure.
exit

 Selection Control Structure
Selection control structure performs one out of two or

more statements depending upon the condition.

The selection control structure (IF-THEN-ELSE) is sown in

figure below.

Statement 2 Statement 1

false true

Exit

is
logical

expresion?

condition

Case1 Case2 Case3 Case4

Case

Process Process Process Process

We can code any program using the three structure. Any

program coded using the all shown control structures is

called a Structured Program and the approach is known as

Structured Programming.

Has 1 condition (simple or compound) and a sequence

structure which is executed a number of times depending on

the condition (logical expression) being true of false.

The main objective of structured programming are

readability and clarity of program, maintenance and reduced

testing problems.

is
logical

expresion?

Body of the
loop

Entry

True

False

Exit

Looping Control Structure

Structured programming eliminates the use of goto

(unconditional control).

C Implements the three control structures

and uses the following language constructs:

All straight line statements such as assignment statement,

input and output statements.

Function calls

if if-else (two way branching) and switch (multiple branching)

statements..

while, for (entry control loops) and do..while (exit control loop)

A restricted use of goto statement.

Simple Statement Compound Statement

Statements
These are the instructions given, to the computer to perform

some action and form the smallest executable unit within a C

Program. A semicolon (;) terminates a statement. The empty or

null statement is written as,

; /*a null statement*/
Is it useful in the situations where the syntax of language need

the presence of a statement but the program logic doest not.

It will be used in loops and their bodies.

single statement terminated by a

semicolon

Formed by two or more

statements enclosed by a pair

of braces { } also known as a

block
{

 statement1;

 statement2;

 :

 statementn;

}

{

 {

}

........

........

}

CONDITIONAL
STATEMENT

(Selection)

There are situations when we wish to execute some

part of the program based on some conditions being

true or false.

In c, if and switch statements are used for selective

execution of a program segment.

if

The statement(s) associated with if is/are executed when

the condition is true, otherwise the statement(s) is/are not

executed at all.

The statement can be either simple or compound.

Generally, it is a compound (two or more statement) which

may have other control statements.

int x, y;

printf("Enter the two intergers\n);

scanf("%d%d",&x,&y);

if(x>y)

printf("%d",x);

statement

Statement

Next statement
(if any)

False TrueIs
condition?

It tests a condition.

For example:

If….else
It tests a condition. The statement 1 is executed when the

condition is true otherwise statement 2 is executed.

The statements may themselves be compound

statements.

if (condition)

statement1;

else

statement2;

statement(selector)

The syntax of if-else statement is givem below:

False True

Statement2 Statement1

Next statement

(if any)

is

condition

?

For example:

int x, y;

printf("Enter the two intergers\n);

scanf("%d%d",&x,&y);

if (x>y)

printf("%d",x);

else

printf("%d",y);

NESTED if-else statement

In C, it is possible to nest if-else statement within one

another.

One or more if statement embedded within the if

statement are called nested ifs.

if (condition)

{

if (condition 2)

{

if(condition3)

 statement3;

else

 statement2;

}

 else

statement1;

}

 else

statement0;

The following if-else statement is a nested if statement

nested to level three:

If the condition 3 is true, the statement 3 will be evaluated.

Otherwise the statement 2 will be evaluated and then the

control transferred to the statement following the

statement 0.(if any)

Next statemnet (if any)

False

False

False

True

True

True

Statement 0 Statement 1 Statement 2 Statement 3

is

condition

1?

is

condition

2?

is

condition

3?

The logic of execution is shown in figure below:

If the condition 1 is false, the statement 0 will be executed.

Otherwise it continues to perform the second test.

If the condition 2 is false, the statement 1 will be executed.

Otherwise it continues to perfom the third test.

The nested if statements should be written with proper

indentation. Use braces { } generously.

Switch

switch (control expression)

{

case constant 1 : statement (s);

 break;

case constant2 : statement(s);

 break;

case constant n : statement(s);

 break;

default : statement(s);

 break;

}

It test a control expression (condition). The control is

transferred to one of the several alternatives.

The value of the expression may be type of int or char but

not of type float or double.

(Multiselector)

The syntax of switch statement is as follows:

Statement 1

Statement 2

Statement 3

Default statement

Is switch

expression

=

case

constant1?

Is switch

expression

=

case

constant2?

Is switch

expression

=

case

constant3?

The following rule should be used for switch statement:

The expression value must be an integer, hence the

type can be int or char.

Case should always be followed by an integer constant,

character constant or constant expression.

All the cases should be distinct.

The block of statement under default is executed when

none of the cases match the value of expression.

Default can optionally be present.

Evaluate Expression

True

True

True

False

False

False

Break

If the break statement is not used, the control passes to the

next case constant, and the remaining statements in the

switch construct will also executed.

Default Keyword
The default keyword (if present) in the switch construct gives

a way to take action id the value of the switch expression

does not match with any of the case constants.

It causes an exit from the switch body. Control goes to the

first statement following the end of the switch statement.

Statement (to be used in switch..case only

Loops/ Repetitions /

Iterations

While

do-while

for

Situations also arise, however in which the required

number of repetitions is not known. The execution of

statements is repeated until the logical condition becomes

true.

Many times its require that a group of instructions is to

be executed until some logical condition is satisfied. It is

known as looping.

In the some situations the number of repetitions

is known in advance.

C provides three (3) statements for repeatedly executing a

sequence of statements.

The syntax of the while statement is as follows:

It may not be executed even once if the condition s false initially.

It is executed till the condition remains true and the control

comes out of the loop when the condition becomes false.

there must be some loop terminating condition inside

 the body of the loop to avoid infinite looping.

While Statement

while(condition)

{

body of loop

}

The point should be remembered while using the while

statement:

Body of loop

is

logical

expression

?

False

True

Next

statement

It can be shown with the help of the flowchart.

The logical expression or

condition means one and

the same and the body of

the loop may have a simple

or compound statement.

It is executed at least one.

It is executed till the condition remains true and the control

comes out of the loop when the condition becomes false.

there must be some loop terminating condition

inside the body of the loop to avoid infinite looping.

do-while Statement

The point should be remembered while using the do-while

statement:

is

logical

expression

?

Body of loop

False

True

Next

statement

The syntax of the while statement

 is as follows:

do

{

body of loop

} while (condition) ;

The braces are not required when

there is only single statement in the

loop.

for (initialization ; test expression ; re-initialization)

{

body of loop

}

For Statement
The while and do-while loops are used when the number or

iterations is not known.

Iterations = the number of times the body of the loop is

executed.

The for loop is used when the number of iterations is

known in advance.

The syntax of the for loop is as follows:

Control variable=initial value

Body of loop

Re-initialize the value

of control variable

True

False Next

statement

Is test

expression

?

The syntax of the for loop is as follows:

Initialization Expression : It is executed only once when the loop

first starts. It provides the loop variable (control variable) an

initial value.

Test Expression : It involves relational operators. It is executed

every time through the loop before the body of the loop is

executed. If the test expression is true, the body of the loop is

executed and if false the control comes out of the loop.

Increment/Decrement (Re-initialization) Expression : It is

always executed at the end of the loop after the body of the

loop.

It transfers control out of a loop, by passing the normal

loop condition test.

Break Statement

We have already used the break statement for

separating case labels in switch statements.

When a break is encountered inside a loop, the loop is

terminated and the control passes to the statement

following the body of the loop.

It can be shown with the help of the flowchart.

Condition

inside

the loop

Start of

loop

Break ;

False

True
Normal

return

Continue Statement

It forces the next iteration of the loop to take place,

skipping any statements following the continue

statement in the body of the loop.

In the for loop, the continue statement causes the

conditional test and then the re-initialization part of the

loop is executed.

In the while and do-while loops, the control passes to the

conditional test.

The following flowchart shows the operation of the continue

statement:

Condition

inside

the loop

Start of

loop

continue;

False

True
Normal

return

goto Statement

It is given here only for the sake of completeness, because

use of a goto statement makes a program difficult to

understand and debug.

#include<stdio.h>

main ()

{

int limit, num, sum=0;

clrscr ();

printf("Enter the limit for addition of natural number\n");

scanf("%d",&limit);

num=1;

target : sum+num : /*target used as label */

if (num<limit)

{

num++ ;

goto target;

}

printf("\n sum of first %d natural number is %d\n\n",

limit, sum) ;

}

The syntax for goto is:

(Unconditional Branching Statement)

goto label ;

The label is a valid C identifier followed by a colon. You

may have any statement after the label in the form :

label : statement ;

The following program illustrates this concept:

Array
Many application require the processing of multiple data

items that share common properties.

The individual data items can be characters, integers,

floating point number.

C provides the derived data types also, which are built from

the basic integer and floating data types.

An array is a C derived type that can store several values of

one type.

An array is a collection of homogeneous elements that are

referred by a common name.

It is also called a subscripted variable as the array elements

are used by the name of an array and an index or subscript.

Arrays are two types:

One Dimensional Array

Multi Dimensional Array

The syntax of declaring a one dimensional array in C :

Declaration/Initialisation

of One-Dimensional Array

Here type declare the base type of the array which is the

type of each element of the array.

The array_name specifies the array name by which the

array will be referenced and size defines the number of

elements the array will store.

type array_name [size] ;

Example: int a[5] ;

In C, the array index always begin with 0. So a [5] would

refer to the third element in the array a where 5 is the

array index or subscript.

The entire array having elements 55, 90, 17, 88 and 36.
Memory

a [0]

a [1]

a [2]

a [3]

a [4]

0

1

2

3

4

55

90

17

88

36

Name of array a

Array index

from 0 to 4

The General syntax of initialization of arrays is given:

type array_name = {list of values comma separated};

Initialization at the time of declaration is known as

Compile Time Initialization

 Example : int a[5] = { 55, 90,17,88,36} ;

Since each element in a is an integer, it occupies two bytes.

Notice that the first element has the index 0.

Name of an array without subscripts also refer to the

address of the first element.

Inputting Array Elements

For reading the array elements (input operation) we must

declare the array first along with the index to be used on

the array.

Thus, since there are five elements, the last one is number 4.

Then the array elements can be inputted as given below:

int a [5], i ;

for (i=0, i<5, i++)

scanf ("%d", &a [i] ;

An Explicit initialization at run time is known as Run Time Initialization

Calling the function by value#include <stdio.h>
#define SIZE 10
main()

{
void show (int) ;
int a [size], i , n ;
clrscr();
printf("Enter number of elements in the array<=%d\n\n", SIZE) ;
scanf("%d",&n);
printf("\nEnter %d elements\n\n", n);
for (i=0; i<n , i++)

scanf("%d", &a[i]);
printf("\nEntered elements of array are\n\n");
for (i=0; i<n;i++)

show(a[i]) ;
getch() ;

}
void show (int value)
{

printf ("%8d", value);
}

Passing Array Elements to

Function
In C, array elements can be passed to a function in two ways.

Calling the function by value

Calling the function by reference

The program output:

Enter number of elements in the array <= 10

5

Enter 5 elements

18 27 15 38 91

Entered elements of array are

18 27 15 38 91The Different

#include <stdio.h>
#define SIZE 10
main()

{
void show (int) ;
int a [size], i , n ;
clrscr();
printf("Enter number of elements in the array<=%d\n\n", SIZE) ;
scanf("%d",&n);
printf("\nEnter %d elements\n\n", n);
for (i=0; i<n , i++)

scanf("%d", &a[i]);
printf("\nEntered elements of array are\n\n");
for (i=0; i<n;i++)

show(&a[i]) ;
getch() ;

}
void show (int *value)
{

printf ("%8d", *value);
}

The program output:

Enter number of elements in the array <= 10

5

Enter 5 elements

18 27 15 38 91

Entered elements of array are

18 27 15 38 91

Calling the function by reference

The Different

#include <stdio.h>

const intnum_rows= 7;

const intnum_columns= 5;

intmain()

{

intbox[num_rows][num_columns];

introw, column;

for(row = 0; row < num_rows; row++)

for(column = 0; column < num_columns; column++)

box[row][column] = column + (row * num_columns);

for(row = 0; row < num_rows; row++)

{

for(column = 0; column < num_columns; column++)

{

printf("%4d", box[row][column]);

}

printf("\n"); }

return 0;

}

They are very similar to standard arrays with the exception

that they have multiple sets of square brackets after the

array identifier.

Multi Dimensional Array

The array we used in the last example was a one

dimensional array.

Arrays can have more than one dimension, these arrays-

of-arrays are called multidimensional arrays.

CHAPTER 5

FUNCTION

UNDERSTAND FUNCTIONS

The best way to develop and maintain a large

program is to construct it from smaller pieces

or modules.

Modules in C are called Functions.

A function is a block of code used to

perform a specific task.

A function is reusable and therefore

prevents programmers from having to

unnecessarily rewrite what are written

before.

A function cannot be contained in another

function.

C programs are written by combining new

functions with built in functions available in the C

Standard Library.

Two categories of functions:

BUILT IN or PREDEFINED or STANDARD

FUNCTIONS and USER DEFINED FUNCTIONS.

To work with USER DEFINED FUNCTIONS, it is

necessary to declare functions prototypes call

functions and define functions.

A function definition is where the actual code

for the function is written. This code will

determine what the function will do when it is

called.

Types of Function

User Define

Functions

Built in

Functions

DEFINE TERM OF FUNCTION

 The return_type - 4 return type data: char, int,

float & double. Either void or same as type of value

returned to caller.

The function_name - given by programmer.

An optional parameter_list - made up of variable

declaration of all the values to be inserted into the

function and enclosed in parentheses.

A compound statement (Function body) - use

braces { }

To define a function, identify:

1.

2.

3.

4.

Function definition header - must be the same as function

prototype

How Do I Define a Function?

Functions can be defined as having a head & a body.

Head

Body

One of the advantages of using a function is that

the programmer can easily read and identify all the

functions that are used in the program.

USE OF FUNCTIONS IN

C PROGRAMME

EXAMPLE: Function prototype usage

EXAMPLE: A complete program showing the use of

functions in C program.

IDENTIFY THE TYPES OF
FUNCTIONS

Input /

Output

Functions

printf()

scanf ()

getchar ()

putchar()

Pre Defined

 Functions

User Defined

Functions

Built in functions

provided by C

Functions that are

written by

users/programmers

themselves to carry out

various individual tasks.

Functions

without input parameter

and do not return any value

Functions

without input parameter

and return a value

Functions

without input parameter (1-more)

and do not return any value

Functions

without input parameter (1-more)

and return a value

THE DIFFERENCES
BETWEEN TYPES OF

FUNCTION

PRE DEFINED FUNCTION
Pre -defined at the Standard C Libraries

Example : printf (), scanf (),

What we need to do is to use them is to include

the appropriate header files.

Example: #include <stdio.h>

#include<math.h>

What contained in the header files are the

prototypes of the standard functions. The

functions definitions (the body of the functions)

has been compiled and put into a Standard C

Library which will be linked by the compiler

during compilation.

The four types of programmer defined

functions discussed are categorized based on a

value returned and input parameters from

each function.

USER DEFINED FUNCTION

Can be determined from the function

prototypes.

COMPONENTS IN THE
USER DEFINED

FUNCTION

Function Prototypes
It is a function declaration or function head

which is defined by the programmer, before

the function main.

Function Definition
Is known as function implementation which

define the function somewhere in the

program.

Return Statement
A must appear anywhere in the body of the

function definition.

Call Statement

Call the function whenever it needs to be used.

Declare Function Prototypes
Also called function declaration / prototypes.

The format:

In order to write and use your own function,you

need to

Call the function whenever it needs to be used.

The format:

Call Statement

Define Function
Also known as function definition /

implementation, which define the function

somewhere in the program.

THE DIFFERENCES
BETWEEN FUNCTION

CALL BY VALUE &
REFERENCES

Used when invoking functions and the differences

are:

Call by value
Copy of argument passed to function

Changes in function do not effect original

Use when function does not need to modify

argument

Avoids accidental changes

Call by reference
The reference (memory address) of the

variable is passed to the function.

Changes in function effect original

Only used with trusted functions

WRITE C PROGRAMME
USING USER DEFINED

FUNCTION

Output

EXAMPLE OF FUNCTION

Define the function factorial (), which take a single

parameter "int n" and also returns a value of type int.

Then call this function multiple times from main () to

calculate the factorials of the integers between 1 and

10.

EXAMPLE OF FUNCTION

Output

C program

EVIEW UESTION

XERCISES

UESTIONS XERCISES

% lf

%6.2f

\a

\t

1 . What is the purpose of scanf () and printf () functions?

2. Describe formatted Input/Output functions in C language.

3. What is meant by a control string used in I/O statement?Discuss it.

4. Explain getchar (), putchar (), gets () and puts ()

5. When printing a float or double with %f, how many digits after decimal

 does printf () output?

6. What is the purpose of the following in printf ():

a.

b.

c.

d.

7. Using one printf () statement only, print following message:

Remainder can be found using /

and "%" isn't a special symbol.

8. Find syntax error in following program and write equivalent

corrected code:

#include<stdio.h>

main

{

int a ; b =20;

10 =a;

int c;

c = a+b

printf ('the sum='c);

}

 9. What will be the output of the following program?

#include<stdio.h>

main ()

{

char a,b;

a = 'b'

b=a;

printf("b=%c\n",b);

}

UESTION XERCISE

10. Write a C program to compute the sum of the two given integer

 values. If the two values are the same, then return triple their sum.

Expected Output:

3

12

11. Write a C program to get the absolute difference between n and

 51. If n is greater than 51 return triple the absolute difference.

Expected Output:

6

21

0

12. Write a C program to check two given integers, and return true if

 one of them is 30 or if their sum is 30.

Expected Output:

1

1

0

UESTIONS XERCISES

13. Write a C program to check a given integer and return true if it is

 within 10 of 100 or 200.

Expected Output:

1

1

0

14. Write a C program to check whether a given positive number is a

 multiple of 3 or a multiple of 7.

Expected Output:

1

1

1

0

15. Write a C program to check whether a given temperatures is less

 than 0 and the other is greater than 100

Expected Output:

1

1

0

UESTIONS XERCISES

16. What is variable initialization and explain why is it important.

17. Explain details THREE (3) types of programming.

18. Illustrate with a suitable diagram to explain the different between

 complier and interpreter.

19. Developing a program involves steps similar to any problem solving

 task. List the stage involved in a problem solving.

20. Elaborate the keyword which is used to transfer the controls

 back to a calling function from a function and write a sample

 program to justify the answer.

21. In understanding the structure of the C Programs, explain in details

 using of comments in programs.

22. Explain the debugged in C Programs in details.

23. List the types of control statement.

UESTIONS XERCISES

24. Write the output of the following C code.

#include<stdio.h>

void main()

{

 if(0xA)

 if(052)

 if(‘xeb’)

 if(’12’)

 printf(“Our Edu”);

 else;

 else;

 else;

 else;

}

25. With help of diagram below, write a proper C program which is

 find the largest three number

UESTIONS XERCISES

26. Write a C program that accepts an employee's ID, total worked

 hours of a month and the amount he received per hour. Print the

 employee's ID and salary (with two decimal places) of a particular

 month.

Test Data:

Input the Employees ID (Max. 10 chars): 0342

Input the working hrs: 8

Salary amount/hr: 15000

Expected Output:

Employees ID = 0342

Salary = RM 120000.00

27. Write a C program to display following variables.

 a+ c, x + c,dx + x, ((int) dx) + ax, a + x, s + b, ax + b, s + c, ax + c, ax + ux

Variable declaration :

int a = 125, b = 12345;

long ax = 1234567890;

short s = 4043;

float x = 2.13459;

double dx = 1.1415927;

char c = 'W';

unsigned long ux = 2541567890;

UESTIONS XERCISES

28. Write a C program to read a password until it is correct. For

 wrong password print "Incorrect password" and for correct

 password print "Correct password" and quit the program. The

 correct password is 1234.

29. Write a program in C that reads a first name, last name and year of

 birth and display the names and the year one after another

 sequentially.

30. Write a program in C to calculate the sum of three numbers with

 getting input in one line separated by a comma.

Expected Output:

Input three numbers separated by comma: 5,10,15

The sum of three numbers: 30

UESTIONS XERCISES

31. Write a C program to perform addition, subtraction, multiplication

 and division of two numbers.

32. What are some ways information is input into the computer?

33. Which of these are examples of information being processed in a

 computer?

34. What does an algorithm have to do with processing?

35. A precise sequence of instructions for processes that can be

 executed by a computer is called a(n) ...

36. Write a C program to check whether a given number is positive or

 negative.

UESTIONS XERCISES

37. Write a C program to find the eligibility of admission for a

 professional course based on the following criteria:

Marks in Maths >=65

Marks in Phy >=55

Marks in Chem>=50

Total in all three subject >=190 or

Total in Math and Physics >=140

38. What a syntax for C Ternary Operator.

39. What is the output of the C statement below and explain it.

40. What is the output of the C Program below.

UESTIONS XERCISES

41. Write a program in C to find the sum of the series

 1!/1+2!/2+3!/3+4!/4+5!/5 using the function.

42. Write a program in C to find the square of any number using the

 function.

43. Explain what is a static function.

44. It is possible to execute code even after the program exits the main ()

 function.

45. Explain the use of flush () function.

UESTIONS XERCISES

46. Write a C program to perform addition, subtraction, multiplication

 and division of two numbers.

Expected Output :

Input any two numbers separated by comma : 10,5

The sum of the given numbers : 15

The difference of the given numbers : 5

The product of the given numbers : 50

The quotient of the given numbers : 2.000000

47. Write a program in C to store elements in an array and print it.

Test Data :

Input 10 elements in the array :

element - 0 : 1

element - 1 : 1

element - 2 : 2

48. Write a program in C to read n number of values in an array and d

 display it in reverse order

Test Data :

Input the number of elements to store in the array :3

Input 3 number of elements in the array :

element - 0 : 2

element - 1 : 5

element - 2 : 7

UESTIONS XERCISES

48. Write a program in C to read n number of values in an array and d

 display it in reverse order

Test Data :

Input the number of elements to store in the array :3

Input 3 number of elements in the array :

element - 0 : 2

element - 1 : 5

element - 2 : 7

49. Write a program in C to copy the elements of one array into another

 array.

Test Data :

Input the number of elements to be stored in the array :3

Input 3 elements in the array :

element - 0 : 15

element - 1 : 10

element - 2 : 12

50. Write a program in C to show the simple structure of a function.

Expected Output :

The total is : 11

UESTIONS XERCISES

51. Write a program in C to find the square of any number using the

 function.

Test Data :

Input any number for square : 20

52. Write a program in C to swap two numbers using function.

Test Data :

Input 1st number : 2

Input 2nd number : 4

53. Write a program in C to check a given number is even or odd using the

 function.

Test Data :

Input any number : 5

54. What are static variables and functions?

55. What are the valid places where the programmer can apply Break

 Control Statement?

56. How can we store a negative integer?

UESTIONS XERCISES

57. Differentiate between Actual Parameters and Formal Parameters.

58. Can a C program be compiled or executed in the absence of a main()?

59. What do you mean by a Nested Structure?

60. Mention the features of C Programming Language.

61. What is an array?

62. What is /0 character?

63. How is a Function declared in C Language?

64. What is Dynamic Memory allocation? Mention the syntax.

65. Differentiate between call by value and call by reference.

66. Can a programmer create a customized Head File in C language?

67. Explain Local Static Variables and what is their use?

68. What is the difference between declaring a header file with < >

 and ” “?

UESTIONS XERCISES

69. When should we use the register storage specifier?

70. Which statement is efficient and why? x=x+1; or x++; ?

71. Can I declare the same variable name to the variables which have

 different scopes?

72. What are the different storage class specifiers in C?

73. Write a program to swap two numbers without using the third

 variable.

74. How can you print a string with the symbol % in it?

75. How can a programmer remove duplicates in an array?

76. Which structure is used to link the program and the operating

 system?

77. What are the limitations of scanf() and how can it be avoided?

78. Differentiate between the macros and the functions.

79. Suppose a global variable and local variable have the same name. Is it i

 is possible to access a global variable from a block where local variables

 are defined?

UESTIONS XERCISES

80. Write a program in C to check whether a number is a prime number

 or not using the function.

Test Data :

Input a positive number : 5

81. Write a program in C to get the largest element of an array using the

 function.

Test Data :

Input the number of elements to be stored in the array :5

Input 5 elements in the array :

element - 0 : 1

element - 1 : 2

element - 2 : 3

element - 3 : 4

element - 4 : 5

82. Write a program in C to check armstrong and perfect numbers

 using the function.

Test Data :

Input any number: 371

UESTIONS XERCISES

83. Write a program in C to print all perfect numbers in given range using

 the function.

Test Data :

Input lowest search limit of perfect numbers : 1

Input lowest search limit of perfect numbers : 100

84. Write a C programming to find out maximum and minimum of some

 values using function which will return an array.

Test Data :

Input 5 values

25

11

35

65

20

85. Write A C Program For Check Number Is Even Or Odd.

86. Write A C Program To Check Year Is Leap Year Or Not Means leap

 Year Has 366 Days in Year .

UESTIONS XERCISES

87. What is the output of the following program?

88. In C, what is the correct hierarchy of arithmetic operations?

89. What is the output of the following statement?

90. The maximum combined length of the command-line arguments as

 well as the spaces between adjacent arguments is –

 a) 120 characters, b) 56 characters, c) Vary from one OS to another

UESTIONS XERCISES

91. According to ANSI specification, how to declare main () function with

 command-line arguments?

92. In the given below code, if a short int value is 5 byte long, then how

 many times the while loop will get executed?

93. What is x in the following program?

94. What function can be used to free the memory allocated by calloc()?

95. A Variable name in C includes which special symbols?

UESTIONS XERCISES

96. What actually get pass when you pass an array as a function

 argument?

97. In the given below code, what will be return by the function get ()?

98. To print a float value which format specifier can be used?

99. What is the output of the following program?

100. In Decimal system a programmer can convert the binary number

 1011011111000101 very easily.

UESTIONS XERCISES

Write a C program that accepts an employee's ID, total worked hours of

a month and the amount he received per hour. Print the employee's ID

and salary (with two decimal places) of a particular month.

Test Data:

Input the Employees ID (Max. 10 chars): 0342

Input the working hrs: 8

Salary amount/hr: 15000

Expected Output:

Employees ID = 0342

Salary = RM 120000.00

#include <stdio.h>

int main()

{

 char id[10];

 int hour;

 double value, salary;

 printf("Input the Employees ID(Max. 10 chars): ");

 scanf("%s", &id);

 printf("\nInput the working hrs: ");

 scanf("%d", &hour);

 printf("\nSalary amount/hr: ");

 scanf("%lf", &value);

 salary = value * hour;

 printf("\nEmployees ID = %s”, id);

 printf("\nSalary= RM.2lf”, salary);

 return 0;

}

Write a C program to display following variables. a+ c, x + c,dx + x, ((int) dx)

+ ax, a + x, s + b, ax + b, s + c, ax + c, ax + ux

Variable declaration :

int a = 125, b = 12345;

long ax = 1234567890;

short s = 4043;

float x = 2.13459;

double dx = 1.1415927;

char c = 'W';

unsigned long ux = 2541567890;

Write a C program to read a password until it is correct. For wrong

password print "Incorrect password" and for correct password print

"Correct password" and quit the program. The correct password is

1234.

#include <stdio.h>

int main() {

 int pass, x=10;

 while (x!=0)

 {

 printf("\nInput the password: ");

 scanf("%d",&pass);

 if (pass==1234)

 {

 printf("Correct password");

 x=0;

 }

 else

 {

 printf("Wrong password, try another");

 }

 printf("\n");

 }

 return 0;

}

Write a program in C that reads a first name, last name and year of birth

and display the names and the year one after another sequentially.

#include <stdio.h>

int main()

{

 char firstname[20], lastname[20];

 int bir_year;

 printf("Input your firstname: ");

 scanf("%s", firstname);

 printf("Input your lastname: ");

 scanf("%s", lastname);

 printf("Input your year of birth: ");

 scanf("%d", &bir_year);

 printf("%s %s %d\n", firstname, lastname, bir_year);

 return 0;

}

Write a program in C to calculate the sum of three numbers with getting

input in one line separated by a comma.

Expected Output:

Input three numbers separated by comma: 5,10,15

The sum of three numbers: 30

#include <stdio.h>

int num1,num2,num3;

int sum;

char line_text[50];

int main()

{

 printf("Input three numbers separated by comma : ");

 fgets(line_text, sizeof(line_text), stdin);

 sscanf(line_text, "%d, %d, %d", &num1, &num2,

&num3);

 sum = num1+num2+num3;

 printf("The sum of three numbers : %d\n", sum);

 return(0);

}

Write a C program to perform addition, subtraction, multiplication and

division of two numbers.

#include <stdio.h>

int main()

{

 int num1, num2;

 int sum, sub, mult, mod;

 float div;

 /*

 * Read two numbers from user separated by comma

 */

 printf("Input any two numbers separated by comma : ");

 scanf("%d,%d", &num1, &num2);

 /*

 * Performs all arithmetic operations

 */

 sum = num1 + num2;

 sub = num1 - num2;

 mult = num1 * num2;

 div = (float)num1 / num2;

 mod = num1 % num2;

 /*

 * Prints the result of all arithmetic operations

 */

 printf("The sum of the given numbers : %d\n", sum);

 printf("The difference of the given numbers : %d\n", sub);

 printf("The product of the given numbers : %d\n", mult);

 printf("The quotient of the given numbers : %f\n", div);

 printf("MODULUS = %d\n", mod);

return 0;

}

Write a C program to check whether a given number is positive or

negative.

#include <stdio.h>

void main()

{

 int num;

 printf("Input a number :");

 scanf("%d", &num);

 if (num >= 0)

 printf("%d is a positive number \n", num);

 else

 printf("%d is a negative number \n", num);

 return 0;

}

Write a C program to find the eligibility of admission for a professional

course based on the following criteria:

Marks in Maths >=65

Marks in Phy >=55

Marks in Chem>=50

Total in all three subject >=190 or

Total in Math and Physics >=140

#include <stdio.h>

void main()

{ int p,c,m,t,mp;

 printf("Eligibility Criteria :\n");

 printf("Marks in Maths >=65\n");

 printf("and Marks in Phy >=55\n");

 printf("and Marks in Chem>=50\n");

 printf("and Total in all three subject >=190\n");

 printf("or Total in Maths and Physics >=140\n");

 printf("-------------------------------------\n");

 printf("Input the marks obtained in Physics :");

 scanf("%d",&p);

 printf("Input the marks obtained in Chemistry :");

 scanf("%d",&c);

 printf("Input the marks obtained in Mathematics :");

 scanf("%d",&m);

 printf("Total marks of Maths, Physics and Chemistry : %d\n",m+p+c);

 printf("Total marks of Maths and Physics : %d\n",m+p);

 if (m>=65)

 if(p>=55)

 if(c>=50)

 if((m+p+c)>=190||(m+p)>=140)

 printf("The candidate is eligible for admission.\n");

 else

 printf("The candidate is not eligible.\n");

 else

 printf("The candidate is not eligible.\n");

 else

 printf("The candidate is not eligible.\n");

 else

 printf("The candidate is not eligible.\n");

}

Write a program in C to find the sum of the series

1!/1+2!/2+3!/3+4!/4+5!/5 using the function.

#include <stdio.h>

int fact(int);

void main()

{

 int sum;

sum=fact(1)/1+fact(2)/2+fact(3)/3+fact(4)/4+fact(5)/5;

 printf("\n\n Function : find the sum of 1!/1+2!/2+3!/3+4!/4+5!/5 :\n");

 printf("--\n");

 printf("The sum of the series is : %d\n\n",sum);

}

int fact(int n)

 {

int num=0,f=1;

while(num<=n-1)

{

f =f+f*num;

num++;

}

 return f;

 }

Write a program in C to find the square of any number using the

function.

 #include <stdio.h>

double square(double num)

{

 return (num * num);

}

int main()

{

 int num;

 double n;

 printf("\n\n Function : find square of any number :\n");

 printf("--\n");

 printf("Input any number for square : ");

 scanf("%d", &num);

 n = square(num);

 printf("The square of %d is : %.2f\n", num, n);

 return 0;

}

REFERENCES
Miller, G..P (2014). C Programming Absolute Beginner's Guide : (C Progr Absol Begin

Guide 3rd Edition ed.) UK: Kindle Edition

Bajpai, S. (. ((2007)). Introduction to Computer and C Programming ((3rd

Edition). ed.). NY: New Age international.

Gookiin, D. ((2004)). C For Dummies. India: Wiley Publishing International.

Kernighan, B. W. (2012). C Programming Language. UK: PRENTICE HALL

SOFTWARE SERIES.

King, K. ((2008)). C Programming: A Modern Approach. UK: W.W.Norton &

Company.

Michael, V. ((2007)). C Programming For The Absolute Beginner ((2nd Edition).

ed.). UK: Course Technology PTR.

POLITEKNIK TUANKU SULTANAH BAHIYAH

Publisher

