

1

KEMENTERIAN PENGAJIAN TINGGI

SYSTEM

REVIS

PREPARED BY:

SHUKRI BIN ZAKARIA WAN NOR SHELA EZWANE BINTI WAN JUSOH Mechanical Engineering Department Polytechnic Tuanku Sultanah Bahiyah

AUTHORS

SHUKRI BIN ZAKARIA

Lecturer shukri zakaria@ptsb.edu.my

WAN NOR SHELA EZWANE **BT WAN JUSOH**

Lecturer shela@ptsb.edu.my

lev

ROYAL VICTORIA

PIER

All right reserve. No parts of this publication may be reproduce or transmitted in any forms or any means, electronic or mechanical including photocopy, recording or any information storage and retrieval system, without permission in writing from Library of Politeknik Tuanku Sultanah Bahiyah, Kulim Hi-Tech Park, 09090 Kulim, Kedah.

Copyright © 2022 e ISBN 978-967-2740-22-3

TEEPHIL

Mechanical Engineering Department Politeknik Tuanku Sultanah Bahiyah, Kulim Hi Tech Park, 09090 Kulim, Kedah.

PREFACE

Alhamdulillah to Allah SWT With His grace and mercy, the first e-book module of DJM30073 DIGITAL SYSTEM has finally completed. Thank you to my family and friends especially PTSB e-book team for being support me to complete this e-book. I also would like to thank you to my Head of Mechanical Engineering Department, Mr. Azhar Bin Fikri for giving this opportunity. As educator, I feel the need to prepare a e-book module that consist of notes ,step by step practical works and some exercises that can assist the student in the learning process.

lev

UCTORIA

The content of this e-book has been constructed to meet the polytechnic's syllabus requirement. Some chapter contains illustrative screenshots to match the main practical work, enhancing student comprehending ability. This e-book contains 7 chapter such as Number and Code System, Boolean Operation, Sequential Logic, Counters, Registers, Converters and also variety of exercises and examples. Any positive feedback from lecturers and students are mostly welcome and appreciated. Hopefully this e-book module is one of the step that start the long journey of road to excellent.

SYNOPSIS

DIGITAL SYSTEM provides the knowledge on the concepts and basic principles of digital circuits used in computer systems. This course focuses on sequential logic circuits, counters and registers. This course also covers the topics on the methods of signal conversion in electronic circuits.

Upon completion of this course, students should be able to:

CLO1:Distinguish the characteristics and operations of various digital circuits (C4, PLO1)

lev

UCTORIA

CLO2:Construct digital circuits based on schematic diagrams (P4, PLO5)

CLO3:Demonstrate the role of digital circuits in real world applications. (A3, PLO7)

	CONT	ENTS	B R O A C
chapte	r title.		page
	Number & C	ode System	2
	Boolean Ope	eration	12
3	Sequential L	ogic	24
	References		
	CASTLE A VENUESailing	BELGRAVE CALLAND	STR.

CHAPTER 1 NUMBER & CODE SYSTEMS

1.1 Introduction

The binary number system and digital codes are represented by the binary digit '0' and '1' which are known as bits. Bits can be divided by two group which is nibbles and byte. Nibbles have four bits and byte have eight bits in group. The binary number system has its relationship to other number systems such as decimal, hexadecimal, and octal. Binary Code Decimal (BCD) and ASCII code is also known as digital codes. Computers and many types of digital systems functioned used these arithmetic operations with binary numbers.

1.2 Binary (Base 2)

<u>Binary to Decimal</u> Convert 11011_2 to N_{10}

11011 ₂	$= (1x2^4) + (1x2^3) + (0x2^2) + (1x2^1) + (1x2^0)$
	$= 16 + 8 + 0 + 2 + 1 = 27_{10}$

$$11011_2 = 27_{10}$$

Binary to Octal Convert 111111101111000₂ to N_8

111	111	101	111	000 ₂
421	421	421	421	421
7	7	5	7	08

 $111111101111000_2 = 77570_8$

Binary to Hexadecimal

Convert 001111110000_2 to N_{16}

0011	1111	0000 ₂
8421	8421	8421
3	F	0 ₁₆

 $001111110000_2 = 3F0_{16}$

1.3 Decimal (Base 10)

Decimal to Binary

Convert 73_{10} to N_2

Decimal to Octal

Convert 435_{10} to N_8

8	435	-3	_				
8	54	-6					
	6	-	J				
$435_{10} = 663_8$							

Decimal to Hexadecimal

Convert 2890_{10} to N_{16}

16	2890	-10						
16	180	-4						
	11	-						
$2890_{10} = \mathbf{B4A_{16}}$								

1.4 Octal (Base 8)

Octal to Binary

Convert 377₈ to N_2

3	7	7 ₈
421	421	421
011	111	111 ₂

$377_8 = 011111111_2$

Octal to Decimal

Convert 372_8 to N_{10}

$$372_8 = (3x8^2) + (7x8^1) + (2x8^0) = 192 + 56 + 2 = 250_{10}$$

Octal to Hexadecimal (OCTAL > BINARY > HEXADECIMAL)

Convert 372₈ to N_{16}

	3			7	2] ←	N ₈
4	2	1	4	2	1	4	2	1		
0	1	1	1	1	1	0	1	0	←	N ₂
1	8	4	2	1	8	4	2	1		
	8	3 + 4 + 2 +	1 = 15 =	F	8 + 2 = 10 = A				←	N ₁₆
	$372_8 = FA_{16}$									

1.5 Hexadecimal (Base 16: 0-9 and A-F)

Hexadecimal to Binary

Convert $A14_{16}$ to N_2

Α	1	4 ₁₆
8421	8421	8421
1010	0001	0100 ₂

$A14_{16} = 1010\ 0001\ 0100_2$

Hexadecimal to Decimal

Convert $5C2_{16}$ to N_{10}

$$5C2_{16} = (5x16^2) + (12x16^1) + (2x16^0) = 1474_{10}$$

Hexadecimal to Octal (HEXADECIMAL > BINARY > OCTAL)

Convert $9F2_{16}$ to N_8

	Ģ	Ð		F				2]	N ₁₆
8	4	2	1	8	4	2	1	8	4	2	1		
1	0	0	1	1	1	1	1	0	0	1	0		N_2
4	2	1	4	2	1	4	2	1	4	2	1		
4 -	+0+0:	- 4	4 -	+3+1=	= 7	4 -	+ 2 + 0 =	= 6	0 -	+ 2 + 0 =	= 2		N ₈
	0F2 - 4762												

 $9F2_{16} = 4762_8$

****REMEMBER**

10	11	12	13	14	15
Α	В	С	D	E	F

1.6 First and Second Complement

1st Complement:

First complement of a binary number is obtained by changing each 0 to 1 and each 1 to 0.

The 2nd complements of 10011010 is 01100110 which is start from LSB, remain the first '1' and changing each 0 to 1 or vice versa after the first '1'

1.6.1 Signed Number of 2nd Complement:

- > A signed number consists of both sign bit and magnitude bits.
- > The sign bit indicates the number **Positive** (0) or **Negative** (1) at MSB.

MSB								LSB
1	1	0	0	1	1	0	1	0
Negative	Magnitude = 154_{10}							
Sign Bit								
Answer = -154_{10}								

MSB								LSB
0	1	0	0	1	1	0	1	0
Positive				Magnitud	$e = 154_{10}$)		
Sign Bit				-		-		
			Ansv	ver = + 1!	54 ₁₀			

1.6.2 Addition in 2nd Complement system

1.7 BCD Codes

Binary Coded Decimal (BCD) code is a different way than a straight binary coding to represent decimal numbers in binary form, but it is not a number system. BCD is widely used and combines features of both decimal and binary systems because digital systems uses binary numbers, but world is decimal in nature. Each BCD digit is converted/encoded to a 4 bits binary equivalent.

1.2 Decimal to BCD code

DECIMAL	0	1	2	3	4	5	6	7	8	9
BCD	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

The BCD value can never be greater than 9 which can called as 8421 code mean $2^3, 2^2, 2^1, 2^0$. the primary advantage of BCD is the relative ease of converting to and from decimal. The advantages are wasting bits because it is only used 10 over 16. The example is:

So, the answer of 874_{10} after converting to BCD code is 1000 0111 0100_{BCD}.

Decimal	Binary	Octal	Hexadecimal	BCD
0	0	0	0	0
1	1	1	1	0001
2	10	2	2	0010
3	11	3	3	0011
4	100	4	4	0100
5	101	5	5	0101
6	110	6	6	0110
7	111	7	7	0111
8	1000	10	8	1000
9	1001	11	9	1001
10	1010	12	А	0001 0000
11	1011	13	В	0001 0001
12	1100	14	С	0001 0010
13	1101	15	D	0001 0011
14	1110	16	E	0001 0100
15	1111	17	F	0001 0101

1.3 Relationship between number codes and BCD

***For BCD: It also used 8 4 2 1

Example: Convert $\mathbf{25}_{10}$ to BCD number.

2	5 ₁₀
8421	8421
0010	0101_{BCD}

$25_{10} = 0010 0101_{BCD}$

1.8 ASCII Codes

The alphanumeric codes are representing characters and functions found on a computer keyboard. A complete code will include 26 lowercase letters, 26 uppercase letters, 10 numeric digits, 7 punctuation marks and anywhere from 20-40 other characters such as +, /, #, %, * and so on so forth. The most widely used code is ASCII- American Standard Code for

Information Interchange. ASCII code has 7-bit code 2^7 or 128 possible code groups. The table 1.5 list some of the ASCII code. The example will used to transfer information between computers, printers and for the internal storage.

1.9.1 ASCII table code

CONTROL CHARACTERS								6	RAPHIC	SYMBOLS					
NAME	DEC	BINARY	нех	SYMBOL	DEC	BINARY	HEX	SYMBOL	DEC	BINARY	HEX	SYMBOL	DEC	BINARY	HEX
NUL	0	0000000	00	space	32	0100000	20	@	64	1000000	40	s.	96	1100000	60
SOH	1	0000001	01	1	33	0100001	21	А	65	1000001	41	a	97	1100001	61
STX	2	0000010	02	"	34	0100010	22	В	66	1000010	42	b	98	1100010	62
ETX	3	0000011	03	#	35	0100011	23	С	67	1000011	43	с	99	1100011	63
EOT	4	0000100	04	\$	36	0100100	24	D	68	1000100	44	d	100	1100100	64
ENQ	5	0000101	05	%	37	0100101	25	Е	69	1000101	45	e	101	1100101	65
ACK	6	0000110	06	&	38	0100110	26	F	70	1000110	46	f	102	1100110	66
BEL	7	0000111	07	,	39	0100111	27	G	71	1000111	47	g	103	1100111	67
BS	8	0001000	08	(40	0101000	28	Н	72	1001000	48	h	104	1101000	68
HT	9	0001001	09)	41	0101001	29	I	73	1001001	49	i	105	1101001	69
LF	10	0001010	0A	*	42	0101010	2A	J	74	1001010	4A	j	106	1101010	6A
VT	11	0001011	0B	+	43	0101011	2B	К	75	1001011	4B	k	107	1101011	6B
FF	12	0001100	0C	,	44	0101100	2C	L	76	1001100	4C	1	108	1101100	6C
CR	13	0001101	0D	-	45	0101101	2D	М	77	1001101	4D	m	109	1101101	6D
so	14	0001110	0E		46	0101110	2E	N	78	1001110	4E	n	110	1101110	6E
SI	15	0001111	0F	1	47	0101111	2F	0	79	1001111	4F	0	111	1101111	6F
DLE	16	0010000	10	0	48	0110000	30	Р	80	1010000	50	р	112	1110000	70
DC1	17	0010001	11	1	49	0110001	31	Q	81	1010001	51	q	113	1110001	71
DC2	18	0010010	12	2	50	0110010	32	R	82	1010010	52	г	114	1110010	72
DC3	19	0010011	13	3	51	0110011	33	S	83	1010011	53	5	115	1110011	73
DC4	20	0010100	14	4	52	0110100	34	Т	84	1010100	54	t	116	1110100	74
NAK	21	0010101	15	5	53	0110101	35	U	85	1010101	55	u	117	1110101	75
SYN	22	0010110	16	6	54	0110110	36	v	86	1010110	56	v	118	1110110	76
ETB	23	0010111	17	7	55	0110111	37	W	87	1010111	57	w	119	1110111	77
CAN	24	0011000	18	8	56	0111000	38	x	88	1011000	58	x	120	1111000	78
EM	25	0011001	19	9	57	0111001	39	Y	89	1011001	59	у	121	1111001	79
SUB	26	0011010	1A	:	58	0111010	3A	Z	90	1011010	5A	z	122	1111010	7A
ESC	27	0011011	1B	;	59	0111011	3B]	91	1011011	5B	1	123	1111011	7B
FS	28	0011100	IC	<	60	0111100	3C	١	92	1011100	5C		124	1111100	7C
GS	29	0011101	1D	=	61	0111101	3D]	93	1011101	5D	}	125	1111101	7D
RS	30	0011110	1E	>	62	0111110	3E	^	94	1011110	5E	~	126	1111110	7E
US	31	0011111	1F	?	63	0111111	3F	-	95	1011111	5F	Del	127	1111111	7F

Refer to the table, the examples are:

- a) Convert decimal to ASCII code:
 - a) 18 = DC2
 - b) 107 = K
- b) Convert ASCII to hexadecimal:
 - a) HELLO = 48 45 4C 4C 4F
 - b) Hi! = 48 69 21
- c) Meaning of the ASCII code:
 - a) 49 20 4C 4F 56 45 20 55 = I_LOVE_U
 - b) 48 45 4C 5D 2D 4D 45 = HELP_ME

SOLUTION MANUAL

1. Convert Decimal to Binary using Repeat-Division Method $22 = 10110_2$

2	22	-0	
2	11	-1	
2	5	-1	
2	2	-0	
	1		

2. Convert Decimal fraction to binary using Repeat-Multiplication. $0.98 = 0.1111101_2$

3. Convert from Hexadecimal to Binary $59 = 01011001_2$

5	9 ₁₆
8421	8421
0101	1001 ₂

4. Convert from Octal to Decimal a) $103_8 = 67_{10}$

$$103_8 = (1x8^2) + (0x8^1) + (3x8^0) = 64 + 0 + 3 = 67_{10}$$

- 5. Convert 110100011_2 to the following numbers system:
 - a) Decimal = 419_{10}

$$110100011_{2} = (1x2^{8}) + (1x2^{7}) + (0x2^{6}) + (1x2^{5}) + (0x2^{4}) + (0x2^{3}) + (0x2^{2}) + (1x2^{1}) + (1x2^{0}) = 256 + 128 + 32 + 2 + 1 = 419_{10}$$

6. Get the value for the numbers:

```
11010110_2 + 11101101_2 = 111000011_2
```

	1	1	1	1	1				
	1	1	0	1	0	1	1	0	
+	1	1	1	0	1	1	0	1	
1	1	1	0	0	0	0	1	1	

- 7. Perform in 2nd Complement using 8 bits including sign bit.
- a) (+**9**) + (+**6**)

b) (+14) + (-17)

c)
$$23 - 48 = (+23) + (-48)$$

CHAPTER 2 BOOLEAN OPERATIONS

SHORT NOTE CHAPTER 2: BOOLEAN EXPRESSION

BASIC LOGIC GATE

OR O OR works such that the output is true, if ei more th	ATE ther of the two inputs is true. Input can be an two.
Symbol:	Boolean Expression:
AY	Y = A + B
Truth table:	Timing diagram:
A B Y 0 0 0 0 1 1 1 0 1 1 1 1	A B Y
AND AND means that both conditions must be Input can be n	GATE true in order for the conclusion to be true. nore than two.
Symbol:	Boolean Expression:
AY BY	Y = AB
Truth table:	Timing diagram:
A B Y 0 0 0 0 1 0 1 0 0 1 1 1	A B Y
NAND Output is 1 if any or all inputs are 0. It is	GATE a combination of an AND gate followed by
an inv	erter.
Symbol:	Boolean Expression: $Y = \overline{AB}$

APPLICATION OF BOOLEAN EXPRESSION

a) Logic Circuit to Boolean Expression

Example 1: Given logic circuit, find the Boolean Expression.

b) Boolean Expression to Logic Circuit

Example 1: Construct logic circuit from logic expression

THEOREMS OF BOOLEAN EXPRESSION

1	A + 0 = A	Identity Law
	$A \cdot 1 = A$	
2	A + 1 = 1	Null Law
	A . 0 = 0	
3	A + A = A	Idempotent Law
	$A \cdot A = A$	
4	$A + \overline{A} = 1$	Inverse Law
	$A \cdot \overline{A} = 0$	
5	$\bar{A} = A$	Double Complement Law
6	$A + \overline{A}B = A + B$	Absorption Law
	A + AB = A	
	(A+B)(A+C) = A + BC	
7	$\overline{X+Y} = \overline{X} \cdot \overline{Y}$	De Morgan's Theorem
	$\overline{X.Y} = \overline{X} + \overline{Y}$	

Simplification Using Boolean Theorems

a.
$$Y = ABD + ABD$$

 $Y = A\overline{B}D + A\overline{B}\overline{D}$
 $= A\overline{B}(D + \overline{D})$ Inverse Law
 $= A\overline{B}(1)$
 $= A\overline{B}$
b. $Z = (\overline{A} + B)(A + B)$

Simplification Using Karnaugh Map (K-Maps)

K-Maps has a square for each '1' or '0' of a Boolean Function.

One variable K-Maps has $2^1 = 2$ squares

$$\begin{array}{c|c}
\hline \overline{A} & A \\
\hline 0 & 1
\end{array}$$

Two variable K-Maps has $2^2 = 4$ squares

$$\begin{array}{c|cccc} 0 & 1 \\ \hline B & B \\ 0 & \overline{A} \\ 1 & A \\ \hline \end{array}$$

Three variable K-Maps has $2^3 = 8$ squares

		0	1
		C	С
00	$\overline{A} \overline{B}$		
01	\overline{AB}		
11	AB		
10	$A \overline{B}$		

Four variable K-Maps has $2^4 = 16$ squares

		00	01	11	10
		$\overline{C} \overline{D}$	$\overline{C}D$	CD	$C \overline{D}$
00	$\overline{A} \overline{B}$				
01	$\overline{A}B$				
11	AB				
10	$A \overline{B}$				

Simplification Using K-Maps

1. Simplify $X = ABC + AB\overline{C}$ using K-Maps

THE SUM-OF-PRODUCT FORM (SOP) FORM

4 A standard SOP expression is one in which all the variables in the domain appear in product term in the expression. Example is $A\overline{B}C + \overline{A}B\overline{C}$.

4 Example:

Convert the Boolean expression $A\overline{B}C + \overline{A}\overline{B} + AB\overline{C}D$ into standard SOP form.

Solution:

The 1 st term: $\sqrt{R}C$	Missing variable D	$A\overline{B}C = A\overline{B}C(\mathbf{D} + \overline{\mathbf{D}}) = A\overline{B}C\mathbf{D} + A\overline{B}C\overline{D}$
The 2^{nd} term: $\overline{A} \overline{B}$	Missing variable C and D	$\overline{\overline{A}} \overline{\overline{B}} = \overline{\overline{A}} \overline{\overline{B}} (C + \overline{C}) = \overline{\overline{A}} \overline{\overline{B}} C + \overline{\overline{A}} \overline{\overline{B}} \overline{C}$ $\overline{\overline{A}} \overline{\overline{B}} C (D + \overline{D}) + \overline{\overline{A}} \overline{\overline{B}} \overline{\overline{C}} (D + \overline{D})$
		= A B C D + A B C D + A B C D + A B C D
The 3 rd term:	Standard	$= AB\overline{C}D$
$AB\overline{C}D$	SOP	
The complete standard SOP form of the original expression is a follow:		$= A\overline{B}CD + A\overline{B}C\overline{D} + \overline{A} \overline{B}CD + \overline{A} \overline{B}C\overline{D} + \overline{A} \overline{B} \overline{C}D + \overline{A} \overline{B} \overline{C}D + \overline{A} \overline{B} \overline{C}D + \overline{A} \overline{B} \overline{C}D + AB\overline{C}D$
		**if have same equation (more than one), just takes
		one.

4 Develop truth table for the standard SOP expression:

 $A\overline{B}CD + A\overline{B}C\overline{D} + \overline{A}\overline{B}CD + \overline{A}\overline{B}C\overline{D} + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}D + AB\overline{C}D$ **1011** + **1010** + **0011** + **0010** + **0001** + **0000** + **1101**

INPUT				OUTPUT	PRODUCT	
Α	B	С	D	X	TERM	
0	0	0	0	1	<u>ABC</u> D	
0	0	0	1	1	$\overline{A} \overline{B} \overline{C} D$	
0	0	1	0	1	$\overline{A} \overline{B} \overline{C} \overline{D}$	
0	0	1	1	1	$\overline{A} \overline{B} CD$	
0	1	0	0			
0	1	0	1			
0	1	1	0			
0	1	1	1			
1	0	0	0			
1	0	0	1			
1	0	1	0	1	$A\overline{B}C\overline{D}$	
1	0	1	1	1	$A\overline{B}CD$	
1	1	0	0			
1	1	0	1	1	ABCD	
1	1	1	0			
1	1	1	1			

4 Use a K-Maps to minimize the standard SOP expression:

The answer of $A\overline{B}CD + A\overline{B}C\overline{D} + \overline{A}\overline{B}CD + \overline{A}\overline{B}C\overline{D} + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}\overline{D} + AB\overline{C}D$ after simplify using K-maps is $\overline{A}\overline{B} + AB\overline{C}D + A\overline{B}C$.

THE PRODUCT-OF-SUM (POS) FORM

↓ A standard POS expression is one in which all the variables in the domain appear in sum term in the expression. Example is $(A + \overline{B} + C)(\overline{A} + B + \overline{C})$.

4 Example:

Convert the Boolean expression $(A + \overline{B} + C)(\overline{B} + C + \overline{D})(A + \overline{B} + \overline{C} + D)$ into standard POS form.

Solution:

The 1 st term: $(A + \overline{B} + C)$	Missing variable D	$(A + \overline{B} + C) + D\overline{D}$
		= (A + B + C + D)(A + B + C + D)
The 2 nd term:	Missing	$(\overline{B} + C + \overline{D}) + A\overline{A}$
$(\overline{B} + C + \overline{D})$	variable A	$= (\mathbf{A} + \overline{\mathbf{B}} + \mathbf{C} + \overline{\mathbf{D}})(\overline{\mathbf{A}} + \overline{\mathbf{B}} + \mathbf{C} + \overline{\mathbf{D}})$
The 3 rd term:	Standard	$=(A+\overline{B}+\overline{C}+D)$
$(A + \overline{B} + C + D)$	SOP	
The complete standa	ard SOP form	$= (A + \overline{B} + C + D)(A + \overline{B} + C + \overline{D})$
of the original exp	pression is a	$(\overline{A} + \overline{B} + C + \overline{D})(\overline{A} + \overline{B} + \overline{C} + D)$
follow:		
		**if have same equation (more than one),
		just takes one.

4 Develop truth table for the standard POS expression:

$$(A + \overline{B} + C + D) (A + \overline{B} + C + \overline{D}) (\overline{A} + \overline{B} + C + \overline{D}) (A + \overline{B} + \overline{C} + D)$$

$$(0 + 1 + 0 + 0) (0 + 1 + 0 + 1) (1 + 1 + 0 + 1) (0 + 1 + 1 + 0)$$

INPUT				OUTPUT	SUM		
Α	B	С	D	Χ	TERM		
0	0	0	0				
0	0	0	1				
0	0	1	0				
0	0	1	1				
0	1	0	0	0	$A + \overline{B} + C + D$		
0	1	0	1	0	$A + \overline{B} + C + \overline{D}$		
0	1	1	0	0	$A + \overline{B} + \overline{C} + D$		
0	1	1	1				
1	0	0	0				
1	0	0	1				
1	0	1	0				
1	0	1	1				
1	1	0	0				
1	1	0	1	0	$\overline{A} + \overline{B} + C + \overline{D}$		
1	1	1	0				
1	1	1	1				

4 Use a K-Maps to minimize the standard POS expression:

The answer of $(A + \overline{B} + C + D) (A + \overline{B} + C + \overline{D}) (\overline{A} + \overline{B} + C + \overline{D}) (A + \overline{B} + \overline{C} + D)$ after simplify using K-maps is $(B + \overline{C} + D) (\overline{A} + B + \overline{C}) (\overline{A} + B + \overline{D})$.

a) Logic Circuit to Boolean Expression

Given logic circuit, find the Boolean Expression.

b) Boolean Expression to Logic Circuit

Construct logic circuit from logic expression

$$X = (A + B)(\overline{B} + C)$$

c) Simplification Using Boolean Theorems

a.
$$Z = \overline{(\overline{A} + C)(B + \overline{D})}$$

 $Z = \overline{(\overline{A} + C)(B + \overline{D})}$
 $= \overline{(\overline{A} + C) + (\overline{B} + \overline{D})}$
 $= \overline{\overline{AC} + \overline{B}}\overline{D}$
 $= A\overline{C} + \overline{B}D$

d) Use a Karnaugh Map to simplify each expression to a minimum SOP form.

So the answer is $\overline{A} \overline{B} \overline{C} + A B C$

e) Use a Karnaugh Map to simplify each expression to a minimum POS form

 $(A+B+C)(A+B+\overline{C})(A+\overline{B}+C)(A+\overline{B}+\overline{C})(\overline{A}+\overline{B}+C)$ (0+0+0)(0+0+1)(0+1+0)(0+1+1)(1+1+0)

So the answer is $A(\overline{B} + C)$

CHAPTER 3 SEQUENTIAL LOGIC

SHORT NOTE CHAPTER 3: SEQUENTIAL LOGIC

Definition:

A sequential logic circuit which has two stable states. A circuit that has two stable state and can be used to store state information. It can store 1-bit binary number (1 or 0)

a) Sketch the output Q for SR NOR gate flip flop.

b) Sketch the output Q and Q' for SR NAND gate flip flop. Assuming Qinitial = 1.

c) Determine the Q and \overline{Q} output waveforms of the flip flop in Figure below for SR Clocked inputs. Assume that the Positive Edge Trigger Clock (PGT) flip flop is initially RESET.

d) Determine the Q output waveforms of the flip flop in Figure below for SR Clocked with Preset and Clear input control. Assume that the Negative Edge Trigger Clock flip flop is with Qinitial = 1.

	Input					Output
Mode	Asynchronous		Synchronous			
mouo	Preset	Clear	S	R	CLK	Q (t+1)
Asynchronous set	0	1	Х	Х	Х	1
Asynchronous reset	1	0	Х	Х	Х	0
No change	1	1	0	0	1	No change
Reset	1	1	0	1	1	0
Set	1	1	1	0	1	1
Invalid	1	1	1	1	1	Invalid

e) Sketch the output Q for JK flip flop.

f) The waveforms in figure (a) below are applied to the J, K, and clock inputs are indicated. Determine the Q output, assuming that the flip-flop is initially RESET.

g) Determine the Q and \overline{Q} output waveforms of the flip flop in Figure below for T inputs. Assume that the Q initially LOW.

h) Determine the Q output waveforms of the flip flop in Figure below for D inputs. Assume that the Q initially LOW.

- Anil K.Maini (2007), "Digital Electronics:principles, devices and applications" John Wiley & Sons, England.
- Dr. Kuo-pao Yang, CMPS375 Class Notes (Chap03), Boolean Algebra and Digital Logic, page 1-28.
- Dr. I. J. Wassell, Digital Electronics Part I Combinational and Sequential Logic -Sequential Logic Flip-flops and Latches, page 128-157
- Eric Coates MA BSc, Learn about electronics Digital Electronics Numbers System (Revision 15.00 29th December 2020).
- Floyd, T. L. (2003). Digital Fundamentals with Vhdl. Prentice Hall.
- Kaushik, D. K. (2005). Digital Electronics. Dhanpat Rai Publishing Company, New Delhi.
- Maini, A. K. (2008). Register. In *Digital Electronics: Principles, devices and applications*. essay, Wiley India.
- Maini, A. K. (n.d.). *Digital Electronics: Principles, devices and applications*. Retrieved August 29, 2022, from https://www.shahucollegelatur.org.in/Department/Studymaterial/sci/it/BCA/FY/digiele c.pdf
- Salina, M., & Khalid, M. N. M. (2013). counter. In *Digital Electronics*. essay, Oxford Unicersity Press.
- Storr, W. (2022, August 6). Synchronous counter and Decade counter tutorial. Basic Electronics Tutorials. Retrieved August 29, 2022, from https://www.electronicstutorials.ws/counter/count_3.html

KEMENTERIAN PENGAJIAN TINGGI

0

Digital System Revision