TUANKU SULTANAH BAHIYAH
KEMENTERIAN PENGAJIAN TINGGI

Easy Technique

RLC Series \& Parallel AC Circuits

vol. 1

Complex Number Method

SALMIAH NISA@MADDIN

NURASYKIN FAZIL
WAN SABARIAH WAN ISMAIL

Managing Editor

Salmiah Binti Nisa @ Maddin

Editor

Salmiah Binti Nisa @ Maddin
Nurasykin Binti Fazil
Wan Sabariah Binti Wan Ismail

Writer

Salmiah Binti Nisa @ Maddin
Nurasykin Binti Fazil
Wan Sabariah Binti Wan Ismail

Designer

Salmiah Binti Nisa @ Maddin
Nurasykin Binti Fazil

Application Publishers and Developers

Salmiah Binti Nisa @ Maddin
Nurasykin Binti Fazil
Wan Sabariah Binti Wan Ismail

Terbitan Edisi 2022

Hak cipta terpelihara. Tiada bahagian daripada terbitan ini boleh diterbitkan semula, disimpan untuk pengeluaran tau ditukar ke dalam sebarang bentuk atau dengan sebarang alat, sama ada dengan cara elektronik, gambar dan rakaman serta sebagainya tanpa kebenaran bertulis daripada Jabatan Pengajian Politeknik dan Kolej Komuniti, Kementerian Pengajian Tinggi Malaysia terlebih dahulu.

Diterbitkan Oleh :

Jabatan Kejuruteraan Elektrik,
Politeknik Tuanku Sultanah Bahiyah,
Kulim Hi-tech Park, 09000 Kulim, Kedah
Easy Technique RLC Series and Parallel AC Circuits: Complex Number Method

Synopsis

This book contains two main topics that focus on the method of calculating series and parallel circuits using the complex number. The content is based on the latest syllabus for the DET20033 course, where the survey found that students are less proficient in using calculators to calculate impedance, current and voltage values using this method. Findings reveal that an approach to continuous training on how to use calculators can help improve student's skills to master this topic. This book will benefit students especially those taking the DET20033 course. This book is also suitable for general readers who interested in circuit calculations using the complex number method.

TABLE OF CONTENTS

5 INTRODUCTION OF AC CIRCUITS
7 COMPLEX NUMBERS
11 SERIES RL CIRCUITS
13 SERIES RC CIRCUITS
14 SERIES RLC CIRCUITS
16 PARALLEL RL CIRCUITS
16 PARALLEL RC CIRCUITS
16 PARALLEL RLC CIRCUITS
24 EXERCISES

INTRODUCTION OF BASIC AC CIRCUITS

AC circuits as the name (Alternating Current) implies are simply circuits powered by an Alternating

Source and certain frequencies, either voltage or current.

Types of AC Circuits

Connection
RLC circuits connected in

> series, Parallel or

Combination of seriesparallel

An RLC circuit is an electrical circuit consisting of a resistor (R), an inductor (L), and a capacitor (C), connected in series or in parallel.

Figure 1.1: Basic AC Circuit Introduction line map

N
 O O COMPLEX NUMBERS

COMPLEX NUMBERS

Complex numbers are used in many scientific fields, including engineering, electromagnetism, quantum physics and applied mathematics, such as chaos theory. Any physical motion which is periodic, such as an oscillating beam, string, wire, pendulum, electronic signal or electromagnetic wave can be represented by a complex number function.

This can make calculations with the various components simpler than with real numbers and sines and cosines. In control theory, systems are often transformed from the time domain to the frequency domain using the Laplace transform. In fluid dynamics, complex functions are used to describe potential flow in two dimensions. In electrical engineering, the Fourier transform is used to analyse varying voltages and currents. Complex numbers are used in signal analysis and other fields for a convenient description for periodically varying signals.

This use is also extended into digital signal processing and digital image processing, which utilize digital versions of Fourier analysis (and wavelet analysis) to transmit, compress, restore and otherwise process digital audio signals, still images and video signals. Knowledge of complex numbers is clearly absolutely essential for further studies in so many engineering disciplines and is used extensively in many of the ensuing chapters.

Imaginary Numbers when squared give a negative result.

Normally this doesn't happen, because:
\checkmark when we square a positive number we get a positive result, and
\checkmark when we square a negative number we also get a positive result (because a negative time a negative gives a positive), for example -2× $-2=+4$

So, a Complex Number has a real part and an imaginary part.
But either part can be 0, so all Real Numbers and Imaginary Numbers are also Complex Numbers.

Table 2.1: Complex Number Table

Complex Number Real Part Imaginary Part

$\mathbf{3 + 2 i}$	3	$\mathbf{2}$	
$\mathbf{5}$	5	0	Purely Real
$-\mathbf{6 i}$	0	-6	Purely Imaginary

BASIC
 SERIES R-L, R-C AND
 R-L-C CIRCUITS

BASIC SERIES R-L, R-C AND RLC CIRCUITS

The whole of electronics components can be slip into two broad categories, one being the Active components and the other as Passive components. The Passive components include the Resistor (R), Capacitor (C) and the Inductor (L). These are the three most used components in electronics circuit and you will find them in almost every application circuit.

These three components together in different combinations will form the RC, RL and RLC circuits and they have many applications like from filtering circuits, Tube light chokes, multi vibrators etc. So, in this tutorial we will learn the basic of these circuits, the theory behind them and how to use them in our circuits. Before we jump into the main topics lets understand what an R, L and C does in a circuit.

Resistor: Resistors are denoted by the letter " R ". A resistor is an element that dissipates energy mostly in form of heat. It will have a Voltage drop across it which remains fixed for a fixed value of current flowing through it.

Capacitor: Capacitors are denoted by the letter "C". A capacitor is an element which stores energy (temporarily) in form of electric field. Capacitor resists changes in voltage. There are many types of capacitors, out of which the ceramic capacitor and the electrolytic capacitors are mostly used. They charge in one direction and discharge in opposite direction

Inductor: Inductors are denoted by the letter "L". A Inductor is also similar to capacitor, it also stores energy but is stored in form of magnetic field. Inductors resist changes current. Inductors are normally a coil wound wire and is rarely used compared to the former two components.

When these Resistor, Capacitor and Inductors are put together we can form circuits like RC, RL and RLC circuit which exhibits time and frequency dependent responses that will e useful in many AC applications as mentioned already. A RC/RL/RLC circuit can be used as a filter, oscillator and much more.

Basic Principle of RC/RL and RLC circuits

Before we start with each topic let us understand how a Resistor, Capacitor and an Inductor behave in an electronic circuit. For the purpose of understanding let us consider a simple circuit consisting of a capacitor and resistor in series with a power supply (5 V).

In this case when the power supply is connected to the RC pair, the voltage across the Resistor (Vr) increase to its maximum value while the voltage across the capacitor (Vc) stays at zero, then slowly the capacitor starts to build charge and thus the voltage across the resistor will decrease and the voltage across the capacitor will increase until the resistor voltage (Vr) has reached Zero and Capacitor voltage (Vc) has reached its maximum value.

Figure 3.1: Characteristic of Voltage across capacitor and resistor

When the switch is turned on the voltage across the resistor (red wave) reaches its maximum and the voltage across capacitor (blue wave) remains at zero. Then the capacitor charges up and Vr becomes zero and Vc becomes maximum. Similarly, when the switch is turned off capacitor discharges and hence the negative voltage appears across the Resistor and as the capacitor discharges both the capacitor and resistor voltage become zero as shown above.

The same can be visualized for inductors as well. Replace the capacitor with an inductor and the waveform will just be mirrored, that is the voltage across the resistor (Vr) will be zero when the switch is turned on since the whole voltage will appear across the Inductor (VI). As the inductor charges up the voltage across (VI) it will reach zero and the voltage across the resistor (Vr) will reach the maximum voltage.

RC series circuit

The RC circuit (Resistor Capacitor Circuit) will consist of a Capacitor and a Resistor connected either in series or parallel to a voltage or current source. These types of circuits are also called as RC filters or RC networks since they are most commonly used in filtering applications.

An RC circuit can be used to make some crude filters like low-pass, high-pass and Band-Pass filters. A first order RC circuit will consist of only one Resistor and one Capacitor.

RL series circuit

The RL Circuit (Resistor Inductor Circuit) will consist of an Inductor and a Resistor again connected either in series or parallel. A series RL circuit will be driven by voltage source and a parallel RL circuit will be driven by a current source. RL circuit are commonly used in as passive filters, a first order RL circuit with only one inductor and one capacitor.

RLC series Circuit

A RLC circuit as the name implies will consist of a Resistor, Capacitor and Inductor connected in series or parallel. The circuit forms an Oscillator circuit which is very commonly used in Radio receivers and televisions. It is also very commonly used as damper circuits in analogue applications.

Table 3.2: R-L-C Diagram and Characteristic Table
Circuits
R-L
R-C
R-L-C
Types

Circuit Diagram

Z $=\mathbf{R + j X L - j X C}$
Where, $j=i$
(imaginary)
Current, I
Formula

Z = R+jXL	$\mathbf{Z}=\mathbf{R}-\mathbf{j} \mathbf{X C}$	$\mathbf{Z}=\mathbf{R}+\mathbf{j X L - j X C}$
Where, $j=i$	Where, $j=i$	Where, $j=i$
(imaginary)	(imaginary)	(imaginary)

$$
\mathrm{I}=\mathrm{V}\left\llcorner\varnothing^{\circ} / \mathrm{Z}\left\llcorner\varnothing^{\circ}\right.\right.
$$

Voltage
 Drop
 Formula

$$
\begin{gathered}
V R=I\left\llcorner\varnothing^{\circ} \times R\left\llcorner 0^{\circ}\right.\right. \\
V L=I\left\llcorner\varnothing^{\circ} x\right. \\
X L\left\llcorner 90^{\circ}\right.
\end{gathered}
$$

$$
\begin{aligned}
& V R=I\left\llcorner\emptyset^{\circ} \times R L 0^{\circ}\right. \\
& V C=I\left\llcorner\emptyset^{\circ} \times X C L-\right.
\end{aligned}
$$

$$
V R=I\left\llcorner\varnothing^{\circ} \times R\left\llcorner 0^{\circ}\right.\right.
$$

$$
V L=I\left\llcorner\varnothing^{\circ} \times X L\left\llcorner 90^{\circ}\right.\right.
$$

$$
V C=I L \emptyset^{\circ} \times X C L-90^{\circ}
$$

丈

 \vdash
 BASIC PARALLEL R-L, R-C AND R-L-C CIRCUITS

BASIC PARALLEL R-L, R-C AND RLC CIRCUITS

The Parallel RLC Circuit is the exact opposite to the series circuit we looked at in the previous tutorial although some of the previous concepts and equations still apply. However, the analysis of a parallel RLC circuits can be a little more mathematically difficult than series RLC circuits so in this tutorial about parallel RLC circuits only pure components are assumed to keep things simple.

This time instead of the current being common to the circuit components, the applied voltage is now common to all so we need to find the individual branch currents through each element. The total impedance, Z of a parallel RLC circuit is calculated using the current of the circuit similar to that for a DC parallel circuit, the difference this time is that admittance is used instead of impedance. Consider the parallel RLC circuit below.

Parallel RLC Circuit

Figure 4.1: RLC Parallel Circuit Diagram

In the above parallel RLC circuit, we can see that the supply voltage, V_{S} is common to all three components whilst the supply current Is consisting of three parts. The current flowing through the resistor, I_{R}, the current flowing through the inductor, I_{L} and the current through the capacitor, I_{c}.

But the current flowing through each branch and therefore each component will be different to each other and also to the supply current, Is.

The total current drawn from the supply will not be the mathematical sum of the three individual branch currents but their vector sum.

Like the series RLC circuit, we can solve this circuit using the phasor or vector method but this time the vector diagram will have the voltage as its reference with the three current vectors plotted with respect to the voltage. The phasor diagram for a parallel RLC circuit is produced by combining together the three individual phasors for each component and adding the currents vectorially.

Since the voltage across the circuit is common to all three circuit elements we can use this as the reference vector with the three current vectors drawn relative to this at their corresponding angles. The resulting vector current Is is obtained by adding together two of the vectors, I_{L} and I_{C} and then adding this sum to the remaining vector I_{R}. The resulting angle obtained between V and I_{s} will be the circuits phase angle as shown below.

Phasor Diagram for a Parallel RLC Circuit

Figure 4.2: Phasor Diagram for a Parallel RLC Circuit

We can see from the phasor diagram on the right hand side above that the current vectors produce a rectangular triangle, comprising of hypotenuse I_{S}, horizontal axis I_{R} and vertical axis $I_{L}-I_{C}$ Hopefully you will notice then, that this forms a Current Triangle. We can therefore use Pythagoras's theorem on this current triangle to mathematically obtain the individual magnitudes of the branch currents along the x-axis and y-axis which will determine the total supply current I_{S} of these components as shown.

Current Triangle for a Parallel RLC Circuit

$$
\begin{aligned}
& \mathrm{I}_{S}^{2}=\mathrm{I}_{\mathrm{R}}^{2}+\left(\mathrm{I}_{\mathrm{L}}-\mathrm{I}_{\mathrm{C}}\right)^{2} \\
& \mathrm{I}_{S}=\sqrt{\mathrm{I}_{\mathrm{R}}^{2}+\left(\mathrm{I}_{\mathrm{L}}-\mathrm{I}_{\mathrm{C}}\right)^{2}}
\end{aligned}
$$

$$
\therefore I_{S}=\sqrt{\left(\frac{V}{R}\right)^{2}+\left(\frac{V}{X_{L}}-\frac{V}{X_{C}}\right)^{2}}=\frac{V}{Z}
$$

where: $\quad I_{R}=\frac{V}{R}, \quad I_{L}=\frac{V}{X_{L}}, \quad I_{C}=\frac{V}{X_{C}}$

Since the voltage across the circuit is common to all three circuit elements, the current through each branch can be found using Kirchhoff's Current Law, (KCL). Remember that Kirchhoff's current law or junction law states that "the total current entering a junction or node is exactly equal to the current leaving that node". Thus, the currents entering and leaving node " A " above are given as:

$$
\begin{aligned}
& K C L: I_{S}-I_{R}-I_{L}-I_{C}=0 \\
& I_{S}-\frac{V}{R}-\frac{1}{L} \int v d t-C \frac{d v}{d t}=0
\end{aligned}
$$

Taking the derivative, dividing through the above equation by C and then re-arranging gives us the following Second-order equation for the circuit current. It becomes a second-order equation because there are two reactive elements in the circuit, the inductor and the capacitor.

$$
\begin{aligned}
& I_{S}-\frac{d^{2} V}{d t^{2}}-\frac{d V}{R C d t}-\frac{V}{L C}=0 \\
\therefore & I_{S(t)}=\frac{d^{2} V}{d t^{2}}+\frac{d V}{d t} \frac{1}{R C}+\frac{1}{L C} V
\end{aligned}
$$

The opposition to current flow in this type of AC circuit is made up of three components: $\mathrm{X}_{\mathrm{L}} \mathrm{X}_{\mathrm{c}}$ and R with the combination of these three values giving the circuits impedance, Z. We know from above that the voltage has the same amplitude and phase in all the components of a parallel RLC circuit. Then the impedance across each component can also be described mathematically according to the current flowing through, and the voltage across each element as.

Impedance of a Parallel RLC Circuit

$$
\begin{aligned}
& R=\frac{V}{I_{R}} \quad X_{L}=\frac{V}{I_{L}} \quad X_{C}=\frac{V}{I_{C}} \\
& Z=\frac{1}{\sqrt{\left(\frac{1}{R}\right)^{2}+\left(\frac{1}{X_{L}}-\frac{1}{X_{C}}\right)^{2}}} \\
& \therefore \frac{1}{Z}=\sqrt{\left(\frac{1}{R}\right)^{2}+\left(\frac{1}{X_{L}}-\frac{1}{X_{C}}\right)^{2}}
\end{aligned}
$$

Applications

The Resistors, Inductors and Capacitors may be normal and simple components but when they are combined to gather to form circuits like RC/RL and RLC circuit they exhibit complex behaviour which makes it suitable for a wide range of application.

Figure 4.3: Application of RLC Circuits

OHM'S LAW IN R-L-C CIRCUITS

Ohm's law* states that the current I flowing in a circuit is directly proportional to the applied voltage V and inversely proportional to the resistance R, provided the temperature remains constant.

Ohm's Law can be used to validate the static values of circuit components, current levels, voltage supplies, and voltage drops. If, for example, a test instrument detects a higher than normal current measurement, it could mean that resistance has decreased or that voltage has increased, causing a high-voltage situation. This could indicate a supply or circuit issue.

In direct current (dc) circuits, a lower than normal current measurement could mean that the voltage has decreased, or circuit resistance has increased. Possible causes for increased resistance are poor or loose connections, corrosion and/or damaged components.

Loads within a circuit draw on electrical current. Loads can be any sort of component: small electrical devices, computers, household appliances or a large motor. Most of these components (loads) have a nameplate or informational sticker attached. These nameplates provide safety certification and multiple reference numbers.

Technicians refer to nameplates on components to learn standard voltage and current values. During testing, if technicians find that customary values do not register on their digital mustimeters or clamp meters, they can use Ohm's Law to detect what part of a circuit is faltering and from that determine where a problem may lie.

Named for German physicist Georg Ohm (1789-1854), Ohm's Law addresses the key quantities at work in circuits:

Table 4.4: Ohm's Law Quantities Table

	OHM'S	UNIT OF	ROLE IN	IN CASE YOU'RE
QUANTITY	LAW	MEASURE	COLEUITS	WONDERING:

VOLTAGE	E	Volt (V)	Pressure that triggers electron flow	$\mathrm{E}=$ electromotive force (old-school term)
CURRENT	I	Ampere, amp (A)	Rate of electron flow	I = intensity
RESISTANCE	R	Ohm (Ω)	Flow inhibitor	$\Omega=$ Greek letter omega

ம

 PROBLEM

 PROBLEM SOLVING USING COMPLEX NUMBER METHOD

USING CALCULATOR TO COMPUTE VALUE OF REACTANCE, IMPEDANCE : ADDITION OF COMPLEX NUMBERS

Example 1 :

Determine the impedance of a coil in series circuit which has the resistance of 12Ω and a reactance of 16Ω.

Solution :

Given $R=12 \Omega, X L=16 \Omega, Z=$?

Step of using calculator

1. Press MODE button and change mode to 'CMPLX'
2. Enter the value to be calculated

Example : R + jXL = $12+j 16$
Enter number 12 as usual, then press ${ }^{+}$button.
Enter number 16 as usual, then press SHIF ENG button.
3. Press $=$ button once (but this is not the answer yet!)
4. Press SHIF $\square=$ to get the magnitude value of Z,
5. Press SHIF $=$ to get the phase angle value of Z.

So the answer of Example 1 are $Z=R+j X L$

$$
\text { = } 12+j 16
$$

magnitute $\stackrel{\mathrm{Z}=20 \mathrm{~L} 53.13^{\circ} \Omega}{\sim} \stackrel{\text { phase angre }}{ }$

Example 2 :

A resistance of 50Ω is connected in series with the capacitance of $20 \mu \mathrm{~F}$. If the supply of $200 \mathrm{~V}, 100 \mathrm{~Hz}$ is connected across the arrangement find the circuit impedance.

Solution :

Given $\mathrm{R}=50 \Omega, \mathrm{C}=20 \mu \mathrm{f}, \mathrm{V}=200 \mathrm{~V}, \mathrm{f}=100 \mathrm{~Hz}, \mathrm{Z}=$?
Compute Capacitive reactance value,

$$
\begin{aligned}
X C=1 / 2 \pi f C & =1 / 2 \pi(100)(20 \mu) \\
& =79.58 \Omega
\end{aligned}
$$

Step of using calculator

1. Press MODE button and change mode to 'CMPLX'
2. Enter the value to be calculated

Example: R-jXC=50-j79.58
Enter number 50 as usual, then press \square button.

Enter number 79.58 as usual,then press $\begin{array}{lll} & \text { SHIF } & \\ \text { ENG button. }\end{array}$
3. Press \square button once (but this is not the answer yet!)
4. Press SHIF $\square=$ to get the magnitude value of Z,
5. Press SHIF $=$ to get the phase angle value of Z.

So the answer of Example 2 are $Z=R-j X C$

$$
\begin{aligned}
& =50-\mathrm{j} 79.58 \\
& \text { magnítute } \\
& \mathrm{Z}=93.98 \mathrm{~L}-57.86^{\circ} \Omega \\
& \text { phase angle }
\end{aligned}
$$

USING CALCULATOR TO COMPUTE VALUE OF CURRENT : DIVISION OF COMPLEX NUMBERS

Example 3 :

A resistance of 50Ω is connected in series with the capacitance of $1 \mu \mathrm{~F}$. If the supply of $200 \mathrm{~V}, 1 \mathrm{kHz}$ is connected across the arrangement, find the circuit current.

Solution :

Given $\mathrm{R}=50 \Omega, \mathrm{C}=1 \mu \mathrm{f}, \mathrm{V}=200 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{Z}=$?
Compute Capacitive reactance value,

$$
\begin{aligned}
X C=1 / 2 \pi f C & =1 / 2 \pi(1 k)(1 \mu) \\
& =159.15 \Omega
\end{aligned}
$$

Compute impedance value,

$$
\begin{aligned}
Z & =R-j X C \\
& =50-j 159.15 \\
Z & =166.82\left\llcorner-72.56^{\circ} \Omega\right.
\end{aligned}
$$

Then, compute current value,

$$
I=V / Z=200\left\llcorner 0^{\circ} / 166.82\left\llcorner-72.56^{\circ}\right.\right.
$$

Step of using calculator

1. Enter the value to be calculated

Example :

$$
\begin{gathered}
I=V / Z=200\left\llcorner 0^{\circ} / 166.82\left\llcorner-72.56^{\circ}\right.\right. \\
\quad I=1.20\left\llcorner 72.56^{\circ} \mathrm{A}\right.
\end{gathered}
$$

200 devide by $166.82=1.20$

So the answer for Example 1 are
0° substract with $-72.56^{\circ}=$

Example 4 :

An RLC series circuit has a 40Ω resistor, a 3 mH inductor, and a $5 \mu \mathrm{~F}$ capacitor. Find the circuit's impedance at 60 Hz . If the voltage source has Vrms=120V, what is Irms at that frequency?

Solution :

Given $\mathrm{R}=40 \Omega, \mathrm{C}=5 \mu \mathrm{f}, \mathrm{L}=3 \mathrm{mH}, \mathrm{V}=120 \mathrm{~V}, \mathrm{f}=60 \mathrm{kHz}, \mathrm{Z}=$? and $\mathrm{I}=$?
Compute Capacitive reactance value,

$$
\begin{gathered}
X C=1 / 2 \pi f C=1 / 2 \pi(60 k)(5 \mu) \\
X C=530.52 \mathrm{~m} \Omega
\end{gathered}
$$

Compute Inductive reactance value,

$$
\begin{gathered}
X L=2 \pi f L=2 \pi(60 k)(3 m) \\
X L=1.13 k \Omega
\end{gathered}
$$

Compute impedance value,

$$
\begin{aligned}
Z & =R+j X L-j X C \\
& =40+j 1.13 k-j 530.52 \\
Z & =600.81\left\llcorner 86.18^{\circ} \Omega\right.
\end{aligned}
$$

Then, compute current value,

$$
\mathrm{I}=\mathrm{V} / \mathrm{Z}=120\left\llcorner 0^{\circ} / 600.81\left\llcorner 86.18^{\circ}\right.\right.
$$

$$
I=199.73\left\llcorner-86.18^{\circ} \mathrm{mA}\right.
$$

USING CALCULATOR TO COMPUTE VALUE OF VOLTAGE DROP

 : MULTIPLYING OF COMPLEX NUMBERS
Example 5 :

The image below depicts an RLC series circuit with the following components: A $120 \mathrm{~V}, 50 \mathrm{~Hz}$ AC supply, A $100-\mathrm{ohm}$ resistor, A $20 \mu \mathrm{~F}$ capacitor, A 420 mH inductor. Calculate voltage drops across all three impedances.

Solution :

Given $\mathrm{R}=100 \Omega, \mathrm{C}=20 \mu \mathrm{f}, \mathrm{L}=420 \mathrm{mH}, \mathrm{V}=120 \mathrm{~V}, \mathrm{f}=50 \mathrm{kHz}, \mathrm{VR}=$? $\mathrm{VC}=$? $\mathrm{VL}=$?
Compute Capacitive reactance value,

$$
\begin{gathered}
X C=1 / 2 \pi f C=1 / 2 \pi(50 k)(20 \mu) \\
X C=0.16 \Omega
\end{gathered}
$$

Compute Inductive reactance value,

$$
\begin{gathered}
\mathrm{XL}=2 \pi f \mathrm{~L}=2 \pi(50 \mathrm{k})(420 \mathrm{~m}) \\
\mathrm{XL}=131.95 \mathrm{k} \Omega
\end{gathered}
$$

Compute impedance value,

$$
\begin{aligned}
Z & =R+j X L-j X C \\
& =100+j 131.95 k-j 0.16 \\
Z & =131.95\left\llcorner 89.9^{\circ} \mathrm{k} \Omega\right.
\end{aligned}
$$

Then, compute current value,

$$
\begin{aligned}
I=V / Z & =120\left\llcorner 0^{\circ} / 131.95\left\llcorner 89.96^{\circ} k\right.\right. \\
I & =909.44\left\llcorner-89.96^{\circ} \mu \mathrm{A}\right.
\end{aligned}
$$

Finally, compute voltage drop value for each impedance
a) Voltage drop across resistor,

b) Voltage drop across Inductor,

$$
\begin{gathered}
V L=I \times j X L=\left(909.44\left\llcorner-89.96^{\circ} \mu A\right) \times\left(131.95\left\llcorner 90^{\circ} A\right)\right.\right. \\
V L=0.12\llcorner 0.04 \mathrm{~V}
\end{gathered}
$$

c) Voltage drop across capacitor.

$$
\begin{gathered}
V L=I \times(-j X C)=\left(909.44\left\llcorner-89.96^{\circ} \mu \mathrm{A}\right) \times\left(0.16 \mathrm{~L}-90^{\circ} \mathrm{A}\right)\right. \\
\mathrm{VC}=145.51\llcorner-179.96 \mu \mathrm{~V}
\end{gathered}
$$

USING CALCULATOR TO COMPUTE VALUE OF REACTANCE, IMPEDANCE : USING OF COMPLEX NUMBERS

Example 1 :

Determine the total impedance, Z_{T}, total current $\mathrm{i}(\mathrm{t})$, current through the resistor I_{R}, current through the inductor, I_{L} and current through the capacitor, Ic for circuit shown below.
Given $\mathrm{Vt}(\mathrm{t})=100 \cos 100 \mathrm{t}$ V

Solution :

$$
\begin{aligned}
& \text { Given } R=40 \Omega, L=0.6 H C=0.8 \mathrm{mF} \\
& V t(t)=100 \cos 100 \mathrm{t} V
\end{aligned}
$$

Step of using calculator

1.

Press
MODE button and change mode to 'CMPLX'
2. Find Z_{L} and Z_{c}.
$Z_{L}=j \omega L$

ENG	$($	100	$)$	$($	0.6	$)$

$=\mathrm{j} 60 \Omega$
$Z_{c}=-\frac{j}{w c}$
$=(-)$
ENG \square
\square 100 x 0.8 SHIFT 5 $=-\mathrm{j} 12.5$
3. Find Z_{T}

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{T}}=\mathrm{R}\|\mathrm{j} 60\|-\mathrm{j} 12.5 \\
& \frac{1}{z T}=\frac{1}{R}+\frac{1}{z L}+\frac{1}{z C} \\
& \underline{\underline{\mathrm{Z}_{\mathrm{I}}}}=\frac{1}{\frac{1}{R}+\frac{1}{z L}+\frac{1}{z C}} \\
& \mathrm{Z}_{\mathrm{T}}=\frac{1}{\frac{1}{40}+\frac{1}{j 60}+\frac{1}{-j 125}} \\
& \mathrm{Z}_{T}=\frac{1}{0.025+j 0.063} \\
& \mathrm{Z}_{T}=5.39-\mathrm{j} 13.67 \\
& \mathrm{Z}_{T}=\mathbf{1 4 . 6 9 \mathrm { L } - 6 8 . 4 6 { } ^ { \circ } \Omega}
\end{aligned}
$$

Find Z_{T} by using calculator

Answer in rectangular

To change answer in polar

Answer in polar

So the answer of Example 1 are $Z_{T}=R+j X$

3. Find total current, i((t)
$i(t)=\frac{V}{z T}$
$\mathrm{i}(\mathrm{t})=\frac{100 \mathrm{~L} \mathrm{o}^{\circ}}{5.39-\mathrm{j} 13.67}$
$i(t)=2.496+j 6.33 \mathrm{~A}$
Find $\mathrm{i}(\mathrm{t})$ by using calculator

Answer in rectangular
2.496 SHIFT $=6.33 \mathrm{i}$

To change answer in polar

Answer in polar

So the answer of Example 1 are

$$
\begin{aligned}
& \mathrm{i}(\mathrm{t})=2.496+\mathrm{j} 6.33 \mathrm{~A} \\
& \mathrm{i}(\mathrm{t})=6.81\left\llcorner 68.46^{\circ} \mathrm{A}\right.
\end{aligned}
$$

Find total current, I_{R}
$I_{R}=\frac{V}{R}$
$\mathrm{I}_{\mathrm{R}}=\frac{100 \mathrm{~L} \boldsymbol{o}^{\mathrm{f}}}{40}$
$\mathrm{I}_{\mathrm{R}}=2.5 \mathrm{~A}\left\llcorner 0^{\circ} \mathrm{A}\right.$
Find I_{R} by using calculator

Answer in rectangular

то change answer in polar

Answer in polar

2.5	SHIFT
\square	

So the answer of Example 1 are

3. Find total current, I_{L}
$\mathrm{I}_{\mathrm{L}}=\frac{\mathrm{V}}{\mathrm{ZL}}$
$\mathrm{L}=\frac{100 \mathrm{~L} 0^{\circ}}{\mathrm{j} 60}$
$I_{L}=-j 1.67 \mathrm{~A}$
Find I_{L} by using calculator

Answer in rectangular
-1.67i

To change answer in polar

Answer in polar
1.67

SHIFT
$=$ L-90

So the answer of Example 1 are

4. Find total current, I_{C}
$\mathrm{Ic}=\frac{\mathrm{v}}{\mathrm{zc}}$
$\mathrm{I}_{\mathrm{C}}=\frac{100 \mathrm{~L} \mathrm{o}^{\mathrm{f}}}{-\mathrm{j} 12.5}$
$\mathrm{I}_{\mathrm{C}}=\mathrm{j} 8 \mathrm{~A}$
Find I_{L} by using calculator

Answer in rectangular
8 i

To change answer in polar
\square
SHIFT

Answer in polar

8	SHIFT	$=$	L90

So the answer of Example 1 are
magnitute

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{L}}=\mathrm{j} 8 \\
& \mathrm{I}_{\mathrm{L}}=8 \perp 90^{\circ} \mathrm{A}
\end{aligned}
$$

QUESTION AND ANSWER

Question 1

An alternating current is given by $e=70 \sin \left(314 t+30^{\circ}\right)$ volt. Determine the voltage if this wave is measured by voltmeter.

ANSWER: VRMS $=49.49 \mathrm{~V}$

Question 2

A 10Ω resistance, 90 mH inductance and a 0.015 uF capacitance are connected in series across an AC source. Calculate the impedance magnitude at frequency 1.2 KHz .

ANSWER: $\mathrm{Z}=1.617 \mathrm{~K} \Omega$

Question 3

With the aid of a diagram, state the relationship between the voltage and the current for pure capacitive circuit.

Question 4

With reference to Figure below, determine the total impedance, Z_{T} for the series circuits which has a frequency of 60 Hz .

ANSWER: $\mathrm{Z}_{\mathrm{T}}=\mathbf{2 0 6 . 4 8 \Omega}$

Question 5

Determine the complex impedance of the following series arrangement at a frequency of 60 Hz

ANSWER: $\mathrm{Z}=170+\mathrm{j} 68.631 \Omega$

Question 6

A sinusoidal current of 5A peak and 60 Hz flows through a capacitor of 20 mF . What voltage will appear across the capacitor?

ANSWER: VC $=\mathbf{6 6 3 . 1 5 m V}$

Question 7

What is the applied voltage for a series RLC circuit when $\mathrm{I}_{\mathrm{T}}=3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=$ 18 V and $\mathrm{R}=100$ ohms?

ANSWER:
$V_{\mathrm{T}}=12.37 \mathrm{~V}$

Question 8

A serial RCL circuit has a 75.0Ω resistor, a $20.0 \mu \mathrm{~F}$ capacitor and a 55.0 mH inductor connected across an 800 -volt rms AC generator operating at 128 Hz .
i. Is the load on the circuit inductive, capacitive or resistive?
ii. What is the phase angle \varnothing
iii. What is the rms current in the circuit
iv. Write the formula for the current in the circuit as a function of time
v. Find the rms voltage across each element
vi. Find the average power delivered to the circuit by the generator

ANSWER:

i. The Load is capacitive
ii. Phase Angle $\varnothing=-13.5$
iii. RMS current $=10.37 \mathrm{~A}$
iv. $i=14.7 \sin (804 t+0.223)$
V. $V_{\text {Rrms }}=777.75 \quad V_{\text {Lrms }}=458.35 \mathrm{~V} \quad V_{\text {crms }}=645.01 \mathrm{~V}$
vi. Average Power, $P=8.11 \mathrm{~kW}$

Question 9

Draw a phasor diagram to represent the sine wave in Figure below

ANSWER

Question 10

A circuit having a resistance of 12Ω, an inductance of 0.15 H and a capacitance of 100 mF in series, is connected across a $100 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate the total impedance, Z_{\top} of RLC circuit

$$
\text { ANSWER: } \mathrm{Z}_{\mathrm{T}}=12+\mathrm{j} 15.7
$$

Question 11

Find the current of I_{1} and I_{2} in Figure below:

ANSWER: $I_{1}=4.55 \mathrm{~mA} \quad I_{2}=4.55 \mathrm{~mA}$

Question 12

Sketch the voltage and current waveform in a purely resistance circuit, inductive circuit and capacitive circuit.

Purely Resistive

Purely Inductive

Purely Capacitive

Question 13

With reference to Figure below, determine thee total current flow(I) and sketch the voltage phasor diagram of the circuit.

ANSWER:

i. $X_{L}=47.13 \Omega$
ii. $X_{C}=31.83 \Omega$
iii. $Z_{T}=19.4 \Omega$
iv. $I_{T}=5.15 \mathrm{~A}$
v. $V_{R}=61.8 \mathrm{~V}$
$\mathrm{V}_{\mathrm{L}}=244.7 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{C}}=163.9 \mathrm{~V}$
vi. $\varnothing=51.76^{\circ}$
vii. Phasor diagram

Question 14

With reference to Figure below, a 7Ω resistor is connected in parallel with a 31.4 mH inductor and a 100 uF capacitor. An AC sinusoidal waveform $100 \mathrm{~V}, 50 \mathrm{~Hz}$ is used as a supply to the circuit. Find the value of the total current, I_{T} flowing in the circuit.

ANSWER:

i. $X_{L}=9.86 \Omega$
ii. $X_{C}=31.83 \Omega$
iii. $\mathrm{Z}_{\mathrm{T}}=6.286 \Omega$
iv. $I_{R}=14.29 \mathrm{~A}$
v. $I_{L}=10.41 \mathrm{~A}$
vi. $I_{C}=3.142 \mathrm{~A}$
vii. IT $=16.03 \mathrm{~A}^{0}$

Question 15

Referring to Diagram below, calculate current II, I2 and IT and draw the phasor diagram of currents. Calculate also the power factor, true power and the apparent power.

ANSWER:
i. $X_{L}=251.3 \Omega$
ii. $X_{C}=530.5 \Omega$
iii. $Z_{T}=248.8 \Omega$
iv. $I_{1}=261.7 \mathrm{~mA}$
v. $\mathrm{I}_{2}=0.5 \mathrm{~A}$
vi. $I_{T}=0.83 \mathrm{~A}$

Question 16

Figure below shows the RLC series circuit. Calculate the total impedance, current flowing in the circuit, the potential difference at each component, the phase angle, the value of active power, the value of reactive power and draw the voltage phasor diagram

$240 \mathrm{~V}, 50 \mathrm{~Hz}$

ANSWER:

i. $X_{L}=31.42 \Omega$
ii. $X_{C}=106.12 \Omega$
iii. $Z_{T}=167.56 \Omega$
iv. $I_{T}=1.43 \mathrm{~A}$
v. $\mathrm{V}_{\mathrm{L}}=44.93 \mathrm{~V}$
vi. $V_{R}=214.5 \mathrm{~V}$
vii. $V_{C}=16.03 \mathrm{~A}^{0}$
viii. $\varnothing=-26.47^{\circ}$
ix. $P=308.88$ WATT $\quad \cos \varnothing=0.9$
x. $P=147.58$ VAR $\sin \emptyset=0.43$
xi. VOLTAGE PHASOR DIAGRAM

Question 17

Figure 2 shows the RLC series circuit. Calculate the total impedance, the current flowing in the circuit, the potential difference at each component, the phase angle, the value of active power, the value of reactive power and draw the voltage phasor diagram.

ANSWER :

i. $X_{L}=3.14 \Omega$
ii. $X_{C}=31.83 \Omega$
iii. $Z_{T}=104.03 \Omega$
iv. $I_{T}=2.31 \mathrm{~A}$
v. $\mathrm{V}_{\mathrm{L}}=7.25 \mathrm{~V}$
vi. $V_{R}=231 \mathrm{~V}$
vii. $\mathrm{V}_{\mathrm{C}}=73.53 \mathrm{~V}$
viii. $\varnothing=-16^{0}$
ix. $P=532.22$ WATT $\quad \cos \emptyset=0.96$
x. $P=155.23$ VAR $\sin \emptyset=0.28$
xi. VOLTAGE PHASOR DIAGRAM

Question 18

Describe the characteristics of Purely Capacitive Circuits with aid of correct waveform and phasor diagram.

ANSWER:
Purely capacitive circuit, the voltage V lag Current, I with 90° phase difference or the current, I lead voltage, V with 90° phase difference waveforms

Question 19

A capacitor of 10 mF is connected in series with a 200Ω resistor to a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate the total impedance of circuit.

ANSWER:

i. $X_{C}=0.318 \Omega$
ii. $Z_{T}=200<-0.091^{0}$

Question 20

A 120Ω resistor is in parallel with a capacitor with a capacitive reactance of 40Ω. Both components are across a 12 V ac source. What is the magnitude of the total impedance.

ANSWER: $\mathbf{Z}_{\mathrm{T}}=37.9 \mathbf{\Omega}$

Question 21

Determine the value of each current in Figure below, and describe the phase relationship of each with the source voltage. Draw the current phasor diagram, current and voltage waveform.

ANSWER :

i. $I_{R}=0.08 \mathrm{~A}$
ii. $I_{L}=0.133 \mathrm{~A}$
iii. $I_{T}=0.1552 \mathrm{~A}$
iv. $\varnothing=59.03^{\circ}$
v. PHASOR DIAGRAM

$\mid R=0.08 A$

Hot $=0.1552$

Question 22

By referring to figure below

i. Find total resistor and each Reactance element in the circuit
ii. Redraw the circuit using phasor notation
iii. Calculate the Total Impedence $\left(Z_{T}\right)$
iv. Calculate the total current flow in the circuit (I_{T}) and current flow at L_{1} and C_{1}.
v. Determine Voltage drop at $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{C}}$

ANSWER:

i. $R_{T}=10 \Omega \quad \mathrm{LT}=100 \mathrm{mH} \quad \mathrm{XLTj} 40 \Omega \Omega \quad \mathrm{CT}=100 \mu \mathrm{~F} \quad \mathrm{XCT}=-\mathrm{j} 25$
ii. Redraw the circuit in the phasor form

iii. $Z_{T}=10+j 15 \Omega$
iv. $I_{T}=3.86 A<-15.1^{0} \quad I_{C}=I_{L}=I_{T}=2.22 \mathrm{~A}<-56.31^{0}$
v. $\mathrm{V}_{\mathrm{R}}=22.2 \mathrm{~V}<-56.31^{0} \quad \mathrm{~V}_{\mathrm{L}}=88.8 \mathrm{~V}<33.6^{\circ} \mathrm{V}_{\mathrm{C}}=55.47 \mathrm{~V}<-146.3^{\circ} \quad \mathrm{V}_{\mathrm{T}}=40<00$

Question 23

A 5Ω resistance, a 120 mH inductance and a $100 \mu \mathrm{~F}$ capacitance are connected in series to a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ voltage supply. Calculate the current flowing through the circuit and the voltage across each capacitor and inductor.

ANSWER :

i. $X_{L}=37.7 \Omega$
ii. $X_{c}=031.83 \Omega$
iii. $Z_{T}=7.71 \Omega<49.58^{0}$
iv. IT = 31.13A
v. $V C=990.87 \mathrm{~V} \quad \mathrm{VL}=182.73 \mathrm{~V}$

Question 24

A 20Ω resistor is connected in parallel with an inductance of 20 mH across a $240 \mathrm{~V}, 1 \mathrm{KHz}$ voltage supply. Calculate the current in each branch, the total current, true power, apparent power and reactive power.

> ANSWER : ii. $\quad \mathrm{I}_{\mathrm{R}}=12 \mathrm{~A} \quad \mathrm{X}_{\mathrm{L}}=125.56 \Omega$ $\quad \mathrm{I}_{\mathrm{L}}=1.91 \mathrm{~A} \quad \mathrm{I}_{\mathrm{T}}=12.15 \mathrm{~A}<-9.04{ }^{0}$ iii. True Power, $\mathrm{P}=2.88 \mathrm{KW}$

Question 25

Referring to diagram below, determine total impedence, Z_{\top} for series circuit which has a frequency of 60 Hz .

ANSWER :
i. $X_{C 1}=66.31 \Omega$
ii. $X_{C 2}=33.61 \Omega$
iii. $X_{L}=150.80 \Omega$
iv. $Z T=200+j 51.337 \Omega$

Question 26

A 7Ω resistor is connected in parallel with a 31.4 mH inductor and a $100 \mu \mathrm{~F}$ capacitor. An AC sinusoidal waveform $100 \mathrm{~V}, 50 \mathrm{~Hz}$ is used as a supply to this circuit. Find the value of the total current, IT flowing in the circuit.

ANSWER:
i. $\mathrm{X}_{\mathrm{C}}=31.83 \Omega$
ii. $X_{L}=9.86 \Omega$
iii. $I_{R}=14.3<0^{0} \mathrm{~A}$
iv. $\mathrm{I}_{\mathrm{L}}=10.14<-90^{\circ} \mathrm{A}$
v. $\mathrm{I}_{\mathrm{C}}=3.14<+90^{\circ} \mathrm{A}$
vi. $I_{T}=14.3-j 7 A \quad @ 15.92<-26.08^{\circ} \mathrm{A}$

Question 27
Refer to diagram below, determine the total current flow (I) and then sketch the voltage phasor diagram of the circuit.

ANSWER :
i. $X_{c}=31.83 \Omega$
ii. $X_{L}=47.13 \Omega$
iii. $Z_{T}=19.4 \Omega$
iv. $I_{T}=5.15 \mathrm{~A}$
v. $V_{R}=61.7 \mathrm{~V}$
vi. $V_{L}=242.2 \mathrm{~V}$
vii. $V_{c}=163.5 \mathrm{~V}$
viii.Power Factor $=0.619$ @ 51.8^{0}
ix. Phasor Diagram

Question 27
Referring to the diagram below, determine the total impedence, ZT for the series circuit which has a frequency of 30 KHz .

ANSWER:
i. $R T=10 \Omega$
ii. $X_{C}=17.68 \Omega$
iii. $X_{L}=28.27 \Omega$
iv. $Z_{T}=10+j 10.59 \Omega$
@ $14.56 \Omega<46.64^{\circ}$

Question 28
With reference to the Diagram below, Find the value of the total current, I_{T} flowing in the circuit.

ANSWER :
i. $X_{C}=31.85 \Omega$
ii. $X_{L}=9.42 \Omega$
iii. $I_{R}=10.0<0^{\circ} \mathrm{A}$ iv. $I_{L}=10.62<-90^{\circ} \mathrm{A}$
v. $I_{C}=3.14<90^{\circ} \mathrm{A}$
vi. $I_{T}=10.0-j 7.48 \mathrm{~A} @ 12.49<-36.8^{0} \mathrm{~A}$

Question 28

A 90Ω resistor, 0.3 H inductor, $10 \mu \mathrm{~F}$ capacitor and 1 H inductor are connected in series to 100 V , 50 Hz supply. Calculate the voltage across each component and real power dissipation of the circuit.

ANSWER :
i. $X_{c}=318.3 \Omega$
ii. $X_{L}=408.4 \Omega$
iii. $Z=127.35<45^{\circ} \Omega$
iv. $I_{T}=0.79<-45^{\circ} \mathrm{A}$
v. $V_{R}=71.1<-45^{\circ} \mathrm{V}$
vi. $V_{L}=322.64<45^{\circ} \mathrm{V}$
vii. $V_{c}=251.5<-135^{\circ} \mathrm{V}$
viii. $\varnothing=45.03^{0}$
ix. Power Factor $=\operatorname{Cos} 45.03^{0}$
x. Real Power Dissipation $=$ 55.83 Watt

Question 29
By referring to figure below, calculate the total impedence and current at each branch.

> ANSWER :
> i. $\quad I_{C}=2 \mathrm{~A}$
> ii. $\quad I_{L}=1 \mathrm{~A}$
> iii. $\mathrm{I}_{\mathrm{R}}=4.55 \mathrm{~A}$
> iv. $\mathrm{I}_{\mathrm{T}}=2.698 \mathrm{~A}$
> v. $\mathrm{Z}=3.71 \Omega$

Question 30
By referring to figure below, calculate the total impedence, total current and voltage across inductor, L and capacitor, C.

ANSWER:
i. $X_{c}=159.15 \Omega$
ii. $X_{L}=314.15 \Omega$
iii. $Z_{T}=184.45 \Omega<57.17^{0}$ iv. $I_{T}=1.3 \mathrm{~A}<-57.17^{\circ}$
v. $\mathrm{V}_{\mathrm{c}}=206.89 \mathrm{~V}$
vi. $\mathrm{V}_{\mathrm{L}}=408.39 \mathrm{~V}$

Question 31

By referring to figure below, calculate the line current I1, I2, IT and draw the phasor diagram of current. Also find the power factor, true power and the apparent power.

ANSWER:
i. $X_{C}=53.1 \Omega$
ii. $X_{L}=22 \Omega$
iii. $Z_{1}=29.73 \Omega<47.7^{0}$
iv. $Z_{2}=73 \Omega<-46.7^{0}$
v. $\mathrm{I}_{1}=6.73<47.7^{\circ} \mathrm{A}$
vi. $\mathrm{I}_{2}=2.74<46.7^{\circ} \mathrm{A}$
vii. $I_{T}=7.1<-25.1^{\circ} \mathrm{A}$
viii.Current Phasor Diagram

ix. Power Factor = kos 25.1 @ 0.9 lag
x. True Power = 1278Watt
xi. Apparent Power, $S=1420 \mathrm{VA}$

TUANKU SULTANAH BAHIYAH

